model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

719 lines
27 KiB

from __future__ import print_function
from neuron import h
from ..util import nstomho
from ..util import Params
import numpy as np
from .cell import Cell
from .. import data
"""
Original hoc code from RMmodel.hoc
// including the "Octopus" cell:
proc set_Type2o() {
gbar_na = nstomho(1000)
gbar_kht = nstomho(150)
gbar_klt = nstomho(600)
gbar_ka = nstomho(0)
gbar_ih = nstomho(0)
gbar_hcno = nstomho(40)
gbar_leak = nstomho(2)
model = 6
modelname = "Type IIo (Octopus)"
vm0 = -66.67
}
"""
__all__ = ["Octopus", "OctopusRothman", "OctopusSpencer"]
class Octopus(Cell):
type = "octopus"
@classmethod
def create(cls, modelType="RM03", **kwds):
if modelType in ["RM03", "II-o"]:
return OctopusRothman(**kwds)
elif modelType == "Spencer":
return OctopusSpencer(**kwds)
else:
raise ValueError("Octopus cell type %s is unknown" % modelType)
def make_psd(self, terminal, psd_type, **kwds):
"""
Connect a presynaptic terminal to one post section at the specified location, with the fraction
of the "standard" conductance determined by gbar.
The default condition is to try to pass the default unit test (loc=0.5)
Parameters
----------
terminal : Presynaptic terminal (NEURON object)
psd_type : either simple or multisite PSD for bushy cell
kwds: dict of options. Two are currently handled:
postsize : expect a list consisting of [sectionno, location (float)]
AMPAScale : float to scale the ampa currents
"""
if (
"postsite" in kwds
): # use a defined location instead of the default (soma(0.5)
postsite = kwds["postsite"]
loc = postsite[1] # where on the section?
uname = (
"sections[%d]" % postsite[0]
) # make a name to look up the neuron section object
post_sec = self.hr.get_section(uname) # Tell us where to put the synapse.
else:
loc = 0.5
post_sec = self.soma
if psd_type == "simple":
if terminal.cell.type in ["sgc"]:
weight = data.get(
"%s_synapse" % terminal.cell.type,
species=self.species,
post_type=self.type,
field="weight",
)
tau1 = data.get(
"%s_synapse" % terminal.cell.type,
species=self.species,
post_type=self.type,
field="tau1",
)
tau2 = data.get(
"%s_synapse" % terminal.cell.type,
species=self.species,
post_type=self.type,
field="tau2",
)
erev = data.get(
"%s_synapse" % terminal.cell.type,
species=self.species,
post_type=self.type,
field="erev",
)
return self.make_exp2_psd(
post_sec,
terminal,
weight=weight,
loc=loc,
tau1=tau1,
tau2=tau2,
erev=erev,
)
else:
raise TypeError(
"Cannot make simple PSD for %s => %s"
% (terminal.cell.type, self.type)
)
elif psd_type == "multisite":
if terminal.cell.type == "sgc":
# Max conductances for the glu mechanisms are calibrated by
# running `synapses/tests/test_psd.py`. The test should fail
# if these values are incorrect
self.AMPAR_gmax = (
data.get(
"sgc_synapse",
species=self.species,
post_type=self.type,
field="AMPAR_gmax",
)
* 1e3
)
self.NMDAR_gmax = (
data.get(
"sgc_synapse",
species=self.species,
post_type=self.type,
field="NMDAR_gmax",
)
* 1e3
)
self.Pr = data.get(
"sgc_synapse", species=self.species, post_type=self.type, field="Pr"
)
# adjust gmax to correct for initial Pr
self.AMPAR_gmax = self.AMPAR_gmax / self.Pr
self.NMDAR_gmax = self.NMDAR_gmax / self.Pr
# AMPA_gmax = 3.314707700918133*1e3 # factor of 1e3 scales to pS (.mod mechanisms) from nS.
# NMDA_gmax = 0.4531929783503451*1e3
if "AMPAScale" in kwds:
self.AMPAR_gmax = (
self.AMPAR_gmax * kwds["AMPAScale"]
) # allow scaling of AMPA conductances
if "NMDAScale" in kwds:
self.NMDAR_gmax = self.NMDAR_gmax * kwds["NMDAScale"]
return self.make_glu_psd(
post_sec, terminal, self.AMPAR_gmax, self.NMDAR_gmax, loc=loc
)
elif terminal.cell.type == "dstellate":
return self.make_gly_psd(post_sec, terminal, psdtype="glyslow", loc=loc)
else:
raise TypeError(
"Cannot make PSD for %s => %s" % (terminal.cell.type, self.type)
)
else:
raise ValueError("Unsupported psd type %s" % psd_type)
class OctopusRothman(Octopus, Cell):
"""
VCN octopus cell model (point cell).
Rothman and Manis, 2003abc (Type II, with high gklt and hcno - octopus cell h current).
"""
def __init__(
self,
morphology=None,
decorator=None,
nach=None,
ttx=False,
species="guineapig",
modelType=None,
debug=False,
):
"""
initialize the octopus cell, using the default parameters for guinea pig from
R&M2003, as a type II cell with modified conductances.
Modifications to the cell can be made by calling methods below.
Parameters
----------
morphology : string (default: None)
a file name to read the cell morphology from. If a valid file is found, a cell is constructed
as a cable model from the hoc file.
If None (default), the only a point model is made, exactly according to RM03.
decorator : Python function (default: None)
decorator is a function that "decorates" the morphology with ion channels according
to a set of rules.
If None, a default set of channels aer inserted into the first soma section, and the
rest of the structure is "bare".
nach : string (default: None)
nach selects the type of sodium channel that will be used in the model. A channel mechanism
by that name must exist. None implies the default channel (jsrna for this model).
ttx : Boolean (default: False)
If ttx is True, then the sodium channel conductance is set to 0 everywhere in the cell.
Currently, this is not implemented.
species: string (default 'guineapig')
species defines the channel density that will be inserted for different models. Note that
if a decorator function is specified, this argument is ignored.
modelType: string (default: None)
modelType specifies the type of the model that will be used (e.g., "II", "II-I", etc).
modelType is passed to the decorator, or to species_scaling to adjust point models.
debug: boolean (default: False)
debug is a boolean flag. When set, there will be multiple printouts of progress and parameters.
Returns
-------
Nothing
"""
super(OctopusRothman, self).__init__()
if modelType == None:
modelType = "II-o"
if nach == None and species == "guineapig":
nach = "jsrna"
if nach == None and species == "mouse":
nach = "nacn"
self.status = {
"soma": True,
"axon": False,
"dendrites": False,
"pumps": False,
"na": nach,
"species": species,
"modelType": modelType,
"ttx": ttx,
"name": "Octopus",
"morphology": morphology,
"decorator": decorator,
"temperature": None,
}
self.i_test_range = {"pulse": (-4.0, 4.0, 0.2)}
self.spike_threshold = -50
self.vrange = [-70.0, -57.0] # set a default vrange for searching for rmp
if morphology is None:
"""
instantiate a basic soma-only ("point") model
"""
soma = h.Section(
name="Octopus_Soma_%x" % id(self)
) # one compartment of about 29000 um2
soma.nseg = 1
self.add_section(soma, "soma")
else:
"""
instantiate a structured model with the morphology as specified by
the morphology file
"""
self.set_morphology(morphology_file=morphology)
# decorate the morphology with ion channels
if decorator is None: # basic model, only on the soma
self.e_leak = -73.0 # from McGinley et al., 2016
self.e_h = -38.0 # from McGinley et al.
self.R_a = 195 # McGinley et al.
if self.status["species"] == "mouse":
self.mechanisms = ["klt", "kht", "hcnobo", "leak", nach]
else:
self.mechanisms = ["klt", "kht", "ihvcn", "leak", nach]
for mech in self.mechanisms:
self.soma.insert(mech)
self.soma.ek = self.e_k
self.soma.ena = self.e_na
if self.status["species"] == "mouse":
self.soma().hcnobo.eh = self.e_h
else:
self.soma().ihvcn.eh = self.e_h
self.soma().leak.erev = self.e_leak
self.soma.Ra = self.R_a
self.species_scaling(
silent=True, species=species, modelType=modelType
) # set the default type II cell parameters
else: # decorate according to a defined set of rules on all cell compartments
self.decorate()
self.save_all_mechs() # save all mechanisms inserted, location and gbar values...
self.get_mechs(self.soma)
if debug:
print("<< octopus: octopus cell model created >>")
# print 'Cell created: ', self.status
def species_scaling(self, species="guineapig", modelType="II-o", silent=True):
"""
Adjust all of the conductances and the cell size according to the species requested.
Used ONLY for point models.
Parameters
----------
species : string (default: 'guineapig')
name of the species to use for scaling the conductances in the base point model
Must be guineapig
modelType: string (default: 'II-o')
definition of model type from RM03 models, currently limited to type II-o
silent : boolean (default: True)
run silently (True) or verbosely (False)
"""
soma = self.soma
if species == "guineapig" and modelType == "II-o":
self.c_m = 0.9
self.set_soma_size_from_Cm(25.0)
self._valid_temperatures = (22.0, 38.0)
if self.status["temperature"] is None:
self.set_temperature(22.0)
sf = 1.0
if (
self.status["temperature"] == 38.0
): # adjust for 2003 model conductance levels at 38
sf = 3.03 # Q10 of 2, 22->38C. (p3106, R&M2003c)
# note that kinetics are scaled in the mod file.
# self.print_soma_info()
self.adjust_na_chans(soma, sf=sf)
soma().kht.gbar = sf * nstomho(150.0, self.somaarea) # 6.1 mmho/cm2
soma().klt.gbar = sf * nstomho(
1000.0, self.somaarea
) # 40.7 mmho/cm2 3195?
soma().ihvcn.gbar = sf * nstomho(
30.0, self.somaarea
) # 7.6 mmho/cm2, cf. Bal and Oertel, Spencer et al. 25 u dia cell 40ns?
soma().leak.gbar = sf * nstomho(2.0, self.somaarea)
self.axonsf = 1.0
elif species == "mouse" and modelType == "II-o":
self.set_soma_size_from_Cm(25.0)
self._valid_temperatures = (34.0,)
if self.status["temperature"] is None:
self.set_temperature(34.0)
# self.print_soma_info()
self.adjust_na_chans(soma, gbar=3000.0)
soma().kht.gbar = nstomho(150.0, self.somaarea) # 6.1 mmho/cm2
soma().klt.gbar = nstomho(3196.0, self.somaarea) # 40.7 mmho/cm2
soma().hcnobo.gbar = nstomho(
40.0, self.somaarea
) # 7.6 mmho/cm2, cf. Bal and Oertel, Spencer et al. 25 u dia cell
soma().leak.gbar = nstomho(2.0, self.somaarea)
self.axonsf = 1.0
else:
raise ValueError(
'Species "%s" or species-type "%s" is not recognized for octopus cells'
% (species, type)
)
self.status["species"] = species
self.status["modelType"] = modelType
# self.cell_initialize(showinfo=True)
self.check_temperature()
if not silent:
print("set cell as: ", species)
print(" with Vm rest = %6.3f" % self.vm0)
def adjust_na_chans(self, soma, sf=1.0, gbar=1000.0, debug=False):
"""
adjust the sodium channel conductance
Parameters
----------
soma : neuron section object
a soma object whose sodium channel complement will have it's
conductances adjusted depending on the channel type
gbar : float (default: 1000.)
the maximal conductance for the sodium channel
debug : boolean (false):
verbose printing
Returns
-------
Nothing
"""
if self.status["ttx"]:
gnabar = 0.0
else:
gnabar = sf * nstomho(gbar, self.somaarea) # mmho/cm2 - 4244.1 moh - 4.2441
nach = self.status["na"]
if nach == "jsrna":
soma().jsrna.gbar = gnabar
soma.ena = self.e_na
if debug:
print("octopus using jsrna, gbar: ", soma().jsrna.gbar)
elif nach == "nav11":
soma().nav11.gbar = gnabar
soma.ena = self.e_na
soma().nav11.vsna = 4.3
if debug:
print("octopus using inva11, gbar:", soma().nav11.gbar)
elif nach in ["na", "nacn"]:
soma().nacn.gbar = gnabar
soma.ena = self.e_na
if debug:
print("octopus cell using na/nacn, gbar: ", soma().na.gbar)
else:
raise ValueError(
"Sodium channel %s is not recognized for octopus cells", nach
)
class OctopusSpencer(Octopus, Cell):
"""
VCN octopus cell model (with dendrites).
Based on Spencer et al Front. Comput. Neurosci., 22 October 2012
https://doi.org/10.3389/fncom.2012.00083
"""
def __init__(
self,
morphology=None,
decorator=None,
nach="jsrna",
ttx=False,
species="guineapig",
modelType=None,
debug=False,
):
"""
initialize the octopus cell, using the parameters Spencer et al. 2012
Modifications to the cell can be made by calling methods below.
Parameters
----------
morphology : string (default: None)
a file name to read the cell morphology from. If a valid file is found, a cell is constructed
as a cable model from the hoc file.
If None (default), the only a point model is made, exactly according to RM03.
decorator : Python function (default: None)
decorator is a function that "decorates" the morphology with ion channels according
to a set of rules.
If None, a default set of channels aer inserted into the first soma section, and the
rest of the structure is "bare".
nach : string (default: 'na')
nach selects the type of sodium channel that will be used in the model. A channel mechanism
by that name must exist.
ttx : Boolean (default: False)
If ttx is True, then the sodium channel conductance is set to 0 everywhere in the cell.
Currently, this is not implemented.
species: string (default 'guineapig')
species defines the channel density that will be inserted for different models. Note that
if a decorator function is specified, this argument is ignored.
modelType: string (default: None)
modelType specifies the type of the model that will be used (e.g., "II", "II-I", etc).
modelType is passed to the decorator, or to species_scaling to adjust point models.
debug: boolean (default: False)
debug is a boolean flag. When set, there will be multiple printouts of progress and parameters.
Returns
-------
Nothing
"""
super(OctopusSpencer, self).__init__()
if modelType == None:
modelType = "Spencer"
self.status = {
"soma": True,
"axon": False,
"dendrites": False,
"pumps": False,
"na": nach,
"species": species,
"modelType": modelType,
"ttx": ttx,
"name": "Octopus",
"morphology": morphology,
"decorator": decorator,
"temperature": None,
}
self.i_test_range = (-4.0, 6.0, 0.25)
self.spike_threshold = -50
self.vrange = [-75.0, -63.0] # set a default vrange for searching for rmp
if morphology is None:
"""
instantiate a basic soma-only ("point") model
"""
soma = h.Section(
name="Octopus_Soma_%x" % id(self)
) # one compartment of about 29000 um2
soma.nseg = 1
self.add_section(soma, "soma")
self.set_soma_size_from_Section(self.soma)
else:
"""
instantiate a structured model with the morphology as specified by
the morphology file
"""
self.set_morphology(morphology_file=morphology)
# decorate the morphology with ion channels
if decorator is None: # basic model, only on the soma
self.e_leak = -62.0 # from Spencer et al., 2012
self.e_h = -38.0 ## from Spencer et al., 2012
self.R_a = 100.0 # from Spencer et al., 2012
self.mechanisms = ["klt", "kht", "hcnobo", "leak", nach]
for mech in self.mechanisms:
self.soma.insert(mech)
self.soma.ek = -70.0 # self.e_k
self.soma.ena = 55.0 # self.e_na
self.soma().hcnobo.eh = self.e_h
self.soma().leak.erev = self.e_leak
self.soma.Ra = self.R_a
self.species_scaling(
silent=True, species=species, modelType=modelType
) # set the default type II cell parameters
else: # decorate according to a defined set of rules on all cell compartments
self.decorate()
self.decorated.channelValidate(self, verify=True)
# print 'Mechanisms inserted: ', self.mechanisms
self.get_mechs(self.soma)
# self.cell_initialize(vrange=self.vrange)
if debug:
print("<< octopus: octopus cell model created >>")
# print 'Cell created: ', self.status
def channel_manager(self, modelType="Spencer"):
"""
This routine defines channel density maps and distance map patterns
for each type of compartment in the cell. The maps
are used by the ChannelDecorator class (specifically, it's private
\_biophys function) to decorate the cell membrane.
Parameters
----------
modelType : string (default: 'Spencer')
A string that defines the type of the model. Currently, 1 type is implemented:
Spencer : Spencer et al Front. Comput. Neurosci. 2012
Returns
-------
Nothing
Notes
-----
This routine defines the following variables for the class:
# conductances (gBar)
# a channelMap (dictonary of channel densities in defined anatomical compartments)
# a current injection range for IV's (when testing)
# a distance map, which defines how selected conductances in selected compartments
will change with distance. This includes both linear and exponential gradients,
the minimum conductance at the end of the gradient, and the space constant or
slope for the gradient.
"""
#
# Create a model based on the Spencer model
# Channel decoration and stick model from Figure 2
# densities from Tables 2 and 3
if modelType == "Spencer":
# print self.c_m
self.c_m = 0.9
# self.set_soma_size_from_Section(self.soma)
totcap = self.totcap
refarea = self.somaarea # totcap / self.c_m # see above for units
# self.print_soma_info()
self._valid_temperatures = (
34.0,
) # 34 for consistency with other mouse models, but
# Spencer data used "33". This affects very slightly
# the HCN channel conductance.
if self.status["temperature"] is None:
self.set_temperature(34.0)
self.gBar = Params(
nabar=0.0, # 0.0407, # S/cm2
nabar_ais=0.42441,
kltbar_ais=0.0,
khtbar_ais=0.0,
ihbar_ais=0.0,
kltbar_soma=0.0407,
khtbar_soma=0.0061,
ihbar_soma=0.0076,
kltbar_dend=0.0027,
khtbar_dend=0.0,
ihbar_dend=0.0006,
khtbar_hillock=0.0,
kltbar_hillock=0.0,
ihbar_hillock=0.0,
leakbar=0.0020,
)
self.channelMap = {
"soma": {
"jsrna": self.gBar.nabar,
"klt": self.gBar.kltbar_soma,
"kht": self.gBar.khtbar_soma,
"hcnobo": self.gBar.ihbar_soma,
"leak": self.gBar.leakbar,
},
"hillock": {
"jsrna": 0.0,
"klt": self.gBar.kltbar_hillock,
"kht": self.gBar.khtbar_hillock,
"hcnobo": self.gBar.ihbar_hillock,
"leak": self.gBar.leakbar,
},
# axon initial segment:
"unmyelinatedaxon": {
"jsrna": self.gBar.nabar_ais,
"klt": self.gBar.kltbar_ais,
"kht": self.gBar.khtbar_ais,
"hcnobo": self.gBar.ihbar_ais,
"leak": self.gBar.leakbar,
},
"primarydendrite": {
"jsrna": 0.0,
"klt": self.gBar.kltbar_dend,
"kht": self.gBar.khtbar_dend,
"hcnobo": self.gBar.ihbar_dend,
"leak": self.gBar.leakbar,
},
}
self.distMap = {
"primarydendrite": {
"klt": {"gradient": "flat", "gminf": 0.0, "lambda": 100.0},
"kht": {"gradient": "flat", "gminf": 0.0, "lambda": 100.0},
"hcnobo": {"gradient": "flat", "gminf": 0.0, "lambda": 100.0},
} # all flat with distance
}
# reversal potential map
self.channelErevMap = {
"soma": {
"jsrna": 55.0,
"klt": -70,
"kht": -70,
"hcnobo": -38,
"leak": -62.0,
},
"hillock": {
"jsrna": 55.0,
"klt": -70,
"kht": -70,
"hcnobo": -38,
"leak": -62.0,
},
"unmyelinatedaxon": {
"jsrna": 55.0,
"klt": -70,
"kht": -70,
"hcnobo": -38,
"leak": -62.0,
},
"primarydendrite": {
"jsrna": 55.0,
"klt": -70,
"kht": -70,
"hcnobo": -38,
"leak": -62.0,
},
}
else:
raise ValueError("model type %s is not implemented" % modelType)
self.check_temperature()
def species_scaling(self, species="mouse", modelType="Spencer", silent=True):
"""
Adjust all of the conductances and the cell size according to the species requested.
Used ONLY for point models.
Parameters
----------
species : string (default: 'guineapig')
name of the species to use for scaling the conductances in the base point model
Must be guineapig
modelType: string (default: 'II-o')
definition of model type from RM03 models, currently limited to type II-o
silent : boolean (default: True)
run silently (True) or verbosely (False)
"""
soma = self.soma
if species == "mouse" and modelType == "Spencer":
print("Octopus: Mouse, Spencer point model - not a valid model")
self.set_soma_size_from_Cm(25.0)
self._valid_temperatures = (34.0,)
if self.status["temperature"] is None:
self.set_temperature(34.0)
self.print_soma_info()
# self.adjust_na_chans(soma)
# soma().kht.gbar = 0.0061 # nstomho(150.0, self.somaarea) # 6.1 mmho/cm2
# soma().klt.gbar = 0.0407 # nstomho(3196.0, self.somaarea) # 40.7 mmho/cm2
# soma().hcnobo.gbar = 0.0076 #nstomho(40.0, self.somaarea) # 7.6 mmho/cm2, cf. Bal and Oertel, Spencer et al. 25 u dia cell
# soma().leak.gbar = 0.0005 # nstomho(2.0, self.somaarea)
self.axonsf = 1.0
else:
raise ValueError(
'Species "%s" or species-type "%s" is not recognized for octopus cells'
% (species, type)
)
self.status["species"] = species
self.status["modelType"] = modelType
self.cell_initialize(showinfo=True)
if not silent:
print("set cell as: ", species)
print(" with Vm rest = %6.3f" % self.vm0)