model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

84 lines
2.6 KiB

#!/usr/bin/env python
# encoding: utf-8
"""
expfitting.py
Provide single or double exponential fits to data.
"""
import lmfit
import numpy as np
import scipy.optimize
class ExpFitting:
"""
Parameters
----------
nexp : int
1 or 2 for single or double exponential fit
initpars : dict
dict of initial parameters. For example: {'dc': 0.,
'a1': 1., 't1': 3, 'a2' : 0.5, 'delta': 3.}, where
delta determines the ratio between the time constants.
bounds : dict
dictionary of bounds for each parameter, with a list of lower and upper values.
"""
def __init__(self, nexp=1, initpars=None, bounds=None):
self.fitpars = lmfit.Parameters()
if nexp == 1:
# (Name, Value, Vary, Min, Max, Expr)
self.fitpars.add_many(
("dc", 0, True, -100.0, 0.0, None),
("a1", 1.0, True, -25.0, 25.0, None),
("t1", 10.0, True, 0.1, 50, None),
)
self.efunc = self.exp1_err
elif nexp == 2:
self.fitpars.add_many(
("dc", 0, True, -100.0, 0.0, None),
("a1", 1.0, True, 0.0, 25.0, None),
("t1", 10.0, True, 0.1, 50, None),
("a2", 1.0, True, 0.0, 25.0, None),
("delta", 3.0, True, 3.0, 100.0, None),
)
if initpars is not None:
assert len(initpars) == 5
for k, v in initpars.iteritems():
self.fitpars[k].value = v
if bounds is not None:
assert len(bounds) == 5
for k, v in bounds.iteritems():
self.fitpars[k].min = v[0]
self.fitpars[k].max = v[1]
self.efunc = self.exp2_err
else:
raise ValueError
def fit(self, x, y, p, verbose=False):
kws = {"maxfev": 5000}
mim = lmfit.minimize(
self.efunc, p, method="least_squares", args=(x, y)
) # , kws=kws)
if verbose:
lmfit.printfuncs.report_fit(mim.params)
fitpars = mim.params
return fitpars
@staticmethod
def exp1(x, dc, t1, a1):
return dc + a1 * np.exp(-x / t1)
def exp1_err(self, p, x, y):
return np.fabs(y - self.exp1(x, **dict([(k, p.value) for k, p in p.items()])))
@staticmethod
def exp2(x, dc, t1, a1, a2, delta):
return dc + a1 * np.exp(-x / t1) + a2 * np.exp(-x / (t1 * delta))
def exp2_err(self, p, x, y):
return np.fabs(y - self.exp2(x, **dict([(k, p.value) for k, p in p.items()])))