model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

219 lines
6.2 KiB

from __future__ import print_function
"""
Wrapper classes to make working with NEURON easier.
Author: Andrew P. Davison, UNIC, CNRS
"""
__version__ = "0.3.0"
from neuron import nrn, h, hclass
h.load_file("stdrun.hoc")
PROXIMAL = 0
DISTAL = 1
class Mechanism(object):
"""
Examples:
>>> leak = Mechanism('pas', {'e': -65, 'g': 0.0002})
>>> hh = Mechanism('hh')
added set_parameters to allow post-instantiation parameter modification
"""
def __init__(self, name, **parameters):
self.name = name
self.parameters = parameters
def set_parameters(self, parameters):
self.parameters = parameters
def insert_into(self, section):
section.insert(self.name)
for name, value in self.parameters.items():
for segment in section:
mech = getattr(segment, self.name)
setattr(mech, name, value)
class Section(nrn.Section):
"""
Examples:
>>> soma = Section(L=30, diam=30, mechanisms=[hh, leak])
>>> apical = Section(L=600, diam=2, nseg=5, mechanisms=[leak],
... parent=soma, connection_point=DISTAL)
"""
def __init__(
self,
L,
diam,
nseg=1,
Ra=100,
cm=1,
mechanisms=[],
parent=None,
connection_point=DISTAL,
):
nrn.Section.__init__(self)
# set geometry
self.L = L
self.diam = diam
self.nseg = nseg
# set cable properties
self.Ra = Ra
self.cm = cm
# connect to parent section
if parent:
self.connect(parent, connection_point, PROXIMAL)
# add ion channels
for mechanism in mechanisms:
mechanism.insert_into(self)
def add_synapses(self, label, type, locations=[0.5], **parameters):
if hasattr(self, label):
raise Exception("Can't overwrite synapse labels (to keep things simple)")
synapse_group = []
for location in locations:
synapse = getattr(h, type)(location, sec=self)
for name, value in parameters.items():
setattr(synapse, name, value)
synapse_group.append(synapse)
if len(synapse_group) == 1:
synapse_group = synapse_group[0]
setattr(self, label, synapse_group)
add_synapse = add_synapses # for backwards compatibility
def plot(self, variable, location=0.5, tmin=0, tmax=5, xmin=-80, xmax=40):
import neuron.gui
self.graph = h.Graph()
h.graphList[0].append(self.graph)
self.graph.size(tmin, tmax, xmin, xmax)
self.graph.addvar("%s(%g)" % (variable, location), sec=self)
def record_spikes(self, threshold=-30):
self.spiketimes = h.Vector()
self.spikecount = h.APCount(0.5, sec=self)
self.spikecount.thresh = threshold
self.spikecount.record(self.spiketimes)
def alias(attribute_path):
"""
Returns a new property, mapping an attribute nested in an object hierarchy
to a simpler name
For example, suppose that an object of class A has an attribute b which
itself has an attribute c which itself has an attribute d. Then placing
e = alias('b.c.d')
in the class definition of A makes A.e an alias for A.b.c.d
"""
parts = attribute_path.split(".")
attr_name = parts[-1]
attr_path = parts[:-1]
def set(self, value):
obj = reduce(getattr, [self] + attr_path)
setattr(obj, attr_name, value)
def get(self):
obj = reduce(getattr, [self] + attr_path)
return getattr(obj, attr_name)
return property(fset=set, fget=get)
def uniform_property(section_list, attribute_path):
"""
Define a property that will have a uniform value across a list of sections.
For example, suppose we define a neuron model as a class A, which contains
three compartments: soma, dendrite and axon. Then placing
gnabar = uniform_property(["soma", "axon"], "hh.gnabar")
in the class definition of A means that setting a.gnabar (where a is an
instance of A) will set the value of hh.gnabar in both the soma and axon, i.e.
a.gnabar = 0.01
is equivalent to:
for sec in [a.soma, a.axon]:
for seg in sec:
seg.hh.gnabar = 0.01
"""
parts = attribute_path.split(".")
attr_name = parts[-1]
attr_path = parts[:-1]
def set(self, value):
for sec_name in section_list:
sec = getattr(self, sec_name)
for seg in sec:
obj = reduce(getattr, [seg] + attr_path)
setattr(obj, attr_name, value)
def get(self):
sec = getattr(self, section_list[0])
obj = reduce(getattr, [sec(0.5)] + attr_path)
return getattr(obj, attr_name)
return property(fset=set, fget=get)
if __name__ == "__main__":
class SimpleNeuron(object):
def __init__(self):
# define ion channel parameters
leak = Mechanism("pas", e=-65, g=0.0002)
hh = Mechanism("hh")
# create cable sections
self.soma = Section(L=30, diam=30, mechanisms=[hh])
self.apical = Section(
L=600,
diam=2,
nseg=5,
mechanisms=[leak],
parent=self.soma,
connection_point=DISTAL,
)
self.basilar = Section(
L=600,
diam=2,
nseg=5,
mechanisms=[leak],
parent=self.soma,
connection_point=0.5,
)
self.axon = Section(
L=1000, diam=1, nseg=37, mechanisms=[hh], connection_point=0
)
# synaptic input
self.soma.add_synapses("syn", "AlphaSynapse", onset=0.5, gmax=0.05, e=0)
gnabar = uniform_property(["soma", "axon"], "hh.gnabar")
gkbar = uniform_property(["soma", "axon"], "hh.gkbar")
neuron = SimpleNeuron()
neuron.soma.plot("v")
neuron.apical.plot("v")
print("gNa_bar: ", neuron.gnabar)
neuron.gnabar = 0.15
assert neuron.soma(0.5).hh.gnabar == 0.15
h.dt = 0.025
v_init = -65
tstop = 5
h.finitialize(v_init)
h.run()