TITLE detailed model of Glycine receptors COMMENT ----------------------------------------------------------------------------- Kinetic model of Glycine-A receptors ==================================== C -- C1 -- C2 -- O1 | | D1 -- D2 -- D3 ----------------------------------------------------------------------------- This Model is based on: Gentet LJ, Clements JD Binding site stoichiometry and the effects of phosphorylation on human alpha1 homomeric glycine receptors J Physiol (Lond) 2002 vol. 544 (Pt 1) pp. 97-106, Figure 7. Written by Paul Manis, UNC Chapel Hill, 2009 Kinetic values are estimated from VCN glycine receptors. This model has desensitization states. ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it is to be used in conjunction with a sepearate mechanism to describe the release of transmitter and that provides the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS GLYaGC POINTER XMTR RANGE C0, C1, C2, D1, D2, D3, O1, Open RANGE g, gmax, f1, f2 RANGE Erev RANGE k1, km1, a1, b1, d1, r1, d2, r2, d3, r3, rd, dd NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = -70 (mV) : reversal potential gmax = 500 (pS) : maximal conductance : Rates : bushy cell k1 = 12.81 (/uM /ms) : binding km1 = 0.0087 (/ms) : unbinding a1 = 0.0194 (/ms) : opening b1 = 1.138 (/ms) : closing r1 = 5.19 (/ms) : desense 1 d1 = 0.000462 (/ms) : return from d1 r2 = 0.731 (/ms) : return from deep state d2 = 1.641 (/ms) : going to deep state r3 = 3.817 (/ms) : return from deep state d3 = 1.806 (/ms) : going to deep state rd = 1.0 (/ms) dd = 1.0 (/ms) } ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance XMTR (mM) : pointer to glycine concentration f1 (/ms) : binding f2 (/ms) : binding Open (1) } STATE { : Channel states (all fractions) C0 : unbound C1 : single bound C2 : double bound D1 : desense, bound O1 : open D2 : Desense D3 : Desense } INITIAL { XMTR = 0 C0 = 1 C1 = 0 C2 = 0 O1 = 0 D1 = 0 D2 = 0 D3 = 0 } BREAKPOINT { SOLVE kstates METHOD sparse Open = (O1) g = gmax * Open i = (1e-6) * g * (v - Erev) } KINETIC kstates { f1 = k1 * (1e3) * XMTR f2 = k1 * (1e3) * XMTR ~ C0 <-> C1 (f1,km1) ~ C1 <-> C2 (f2,12.5*km1) ~ C2 <-> O1 (a1,b1) ~ C1 <-> D1 (r1, d1) ~ C2 <-> D2 (r2, d2) ~ D1 <-> D2 (rd, dd) ~ D2 <-> D3 (r3, d3) CONSERVE C0+C1+C2+D1+D2+D3+O1 = 1 }