TITLE detailed model of Glycine receptors COMMENT ----------------------------------------------------------------------------- Kinetic model of Glycine-A receptors: Pascal Legendre (Mauthner Cell) ==================================== C0--C1--C2--O1 | C3--O2 ----------------------------------------------------------------------------- This mod file does not include mechanisms for the release and time course of transmitter; it is to be used in conjunction with a sepearate mechanism to describe the release of transmitter and that provides the concentration of transmitter in the synaptic cleft (to be connected to pointer C here). ----------------------------------------------------------------------------- Modified Paul Manis, UNC Chapel Hill, 2009 Name, pointer name, kinetics are range variables, and kinetic values are estimated from VCN glycine receptors. Note: This model does not have a desensitization state. ----------------------------------------------------------------------------- ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { POINT_PROCESS GLYaPL POINTER XMTR RANGE C0, C1, C2, C3, O1, O2, Open RANGE g, gmax, f1, f2 RANGE Erev RANGE kon, koff, a1, b1, a2, b2, r, d RANGE CellType : 0 for bushy, 1 for stellate NONSPECIFIC_CURRENT i } UNITS { (nA) = (nanoamp) (mV) = (millivolt) (pS) = (picosiemens) (umho) = (micromho) (mM) = (milli/liter) (uM) = (micro/liter) } PARAMETER { Erev = -70 (mV) : reversal potential gmax = 500 (pS) : maximal conductance CellType = 1 (1) : define cell type parameters : Rates : Stellate cell fit (1/1/10; excellent fit) : kon = 0.0236 (/uM /ms) : binding : koff = 2.4 (/ms) : unbinding : a1 = 1.707 (/ms) : opening : b1 = 8.95 (/ms) : closing : a2 = 0.325 (/ms) : opening : b2 = 5.871 (/ms) : closing : r = 2.019 (/ms) : return from deep state : d = 28.87 (/ms) : going to deep state :if psdtype == 'glyfast': fit from 3/5/2010. error = 0.174 maxopen = 0.0385 : See synapses.py a1 = 1.000476 (/ms) : opening a2 = 0.137903 (/ms) : opening b1 = 1.700306 (/ms) : closing koff = 13.143132 (/ms) : unbinding kon = 0.038634 (/ms) : binding r = 0.842504 (/ms) : return from deep state b2 = 8.051435 (/ms) : closing d = 12.821820 (/ms) : going to deep state } ASSIGNED { v (mV) : postsynaptic voltage i (nA) : current = g*(v - Erev) g (pS) : conductance XMTR (mM) : pointer to glycine concentration f1 (/ms) : binding f2 (/ms) : binding koff2 (/ms) Open (1) } STATE { : Channel states (all fractions) C0 : unbound C1 : single bound C2 : double bound C3 : bound but closed state to O2 O1 : open O2 : open } INITIAL { XMTR = 0.0 C0 = 1 C1 = 0 C2 = 0 C3 = 0 O1 = 0 O2 = 0 } BREAKPOINT { SOLVE kstates METHOD sparse :VERBATIM : if (CGly > 0.0) { : fprintf(stderr, "t = %f Xmtr = %f\n", t, XMTR); : } : ENDVERBATIM Open = (O1 + O2) g = gmax * Open i = (1e-6) * g * (v - Erev) } KINETIC kstates { f1 = 2.0 * kon * (1e3) * XMTR f2 = kon * (1e3) * XMTR koff2 = 2.0 * koff ~ C0 <-> C1 (f1,koff) ~ C1 <-> C2 (f2,koff2) ~ C2 <-> O1 (a1,b1) ~ C2 <-> C3 (d, r) ~ C3 <-> O2 (a2,b2) CONSERVE C0+C1+C2+C3+O1+O2 = 1 }