model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

398 lines
14 KiB

from __future__ import print_function
import numpy as np
from neuron import h
from .psd import PSD
class GlyPSD(PSD):
"""Glycinergic PSD
This creates postsynaptoc glycinergic receptors. Receptors are connected to the XMTR range
variable of the terminal release mechanisms.
Parameters
----------
section : Section
The postsynaptic section in which to insert the receptor mechanism.
terminal : Terminal
The presynaptic Terminal instance
params : dict, default=None
Dictionary of kinetic parameters to override {'KV', 'KU', 'XMax'}
gmax : float, default=1000.
maximal conductance unless overridden by values used in psdType
psdType : str, default='glyfast'
Kinetic model of receptors: possiblities are:
glyfast, glyslow, glyGC, glya5, or glyexp, as defined in the mechanisms.
message : str, default: None
placeholder for a message to be printed out when testing.
debug: bool, default=False
enable printing of internal debugging messages.
gvar : float, default=0
coefficient of variation of the amplitudes for each of the release zones.
eRev : float, default=-70
"Reversal" potential, or Nernst potential for ions through the receptor channel.
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
"""
def __init__(
self,
section,
terminal,
params=None,
gmax=1000.0,
psdType="glyfast",
message=None,
debug=False,
gvar=0,
eRev=-70,
loc=0.5,
):
PSD.__init__(self, section, terminal)
pre_sec = terminal.section
post_sec = section
from .. import cells
params = {} if params is None else params
self.pre_cell = cells.cell_from_section(pre_sec)
self.post_cell = cells.cell_from_section(post_sec)
self.psdType = psdType
self.gmax = gmax
glyslowPoMax = (
0.162297
) # thse were measured from the kinetic models in Synapses.py, as peak open P for the glycine receptors
glyfastPoMax = 0.038475 # also later verified, same numbers...
if self.psdType == "glyfast":
gmax /= (
glyfastPoMax
) # normalized to maximum open probability for this receptor
if self.psdType == "glyslow":
gmax /= glyslowPoMax # normalized to max open prob for the slow receptor.
# print "Stochastic syn: j = %d of n_fibers = %d n_rzones = %d\n" % (j, n_fibers, n_rzones)
relzone = terminal.relsite
n_rzones = terminal.n_rzones
#
# Create cleft mechanisms
#
clefts = []
for k in range(0, n_rzones):
cl = h.cleftXmtr(loc, sec=post_sec)
clefts.append(cl)
# and then make a set of postsynaptic receptor mechanisms
if self.psdType == "glyslow":
(psd, par) = self.template_Gly_PSD_State_Gly6S(
nReceptors=n_rzones, psdtype=self.psdType
)
elif self.psdType == "glyfast":
(psd, par) = self.template_Gly_PSD_State_PL(
nReceptors=n_rzones, psdtype=self.psdType
)
elif self.psdType == "glyGC":
(psd, par) = self.template_Gly_PSD_State_GC(
nReceptors=n_rzones, psdtype=self.psdType
)
elif self.psdType == "glya5":
(psd, par) = self.template_Gly_PSD_State_Glya5(
nReceptors=n_rzones, psdtype=self.psdType
)
elif self.psdType == "glyexp":
(psd, par) = self.template_Gly_PSD_exp(
nReceptors=n_rzones, psdtype=self.psdType
)
else:
print("**PSDTYPE IS NOT RECOGNIZED: [%s]\n" % (self.psdType))
exit()
if debug:
print("pre_sec: ", pre_sec)
# Connect terminal to psd (or cleft)
self._cleft_netcons = []
for k in range(0, n_rzones):
pre_sec.push()
netcon = h.NetCon(relzone._ref_XMTR[k], clefts[k], 0.1, 0.0, 1.0)
self._cleft_netcons.append(netcon)
h.pop_section()
# set cleft transmitter kinetic parameters
for pname, pval in params.items():
setattr(clefts[k], pname, pval)
h.setpointer(
clefts[k]._ref_CXmtr, "XMTR", psd[k]
) # connect transmitter release to the PSD
v = 1.0 + gvar * np.random.standard_normal()
psd[k].gmax = (
gmax * v
) # add a little variability - gvar is CV of amplitudes
# print 'GLY psd %s %d gmax=%f' % (self.psdType, k, gmax)
psd[k].Erev = eRev # set the reversal potential
par = list(par)
if message is not None:
print(message)
self.all_psd = psd
self.clefts = clefts
self.par = par
# the following templates are a bit more complicated.
# The parameter names as defined in the model are returned
# but also those that are involved in the forward binding reactions are
# listed separately - this is to allow us to run curve fits that adjust
# only a subset of the parameters a time - e.g., the rising phase, then
# the falling phase with the rising phase fixed.
# the dictionary selection is made by selectpars in glycine_fit.py.
#
def template_Gly_PSD_exp(
self, debug=False, nReceptors=2, cellname=None, message=None, loc=0.5
):
"""
Template to build simple glycinergic exp-style PSD
Parameters
----------
nReceptors : int, default=2
number of sites to implement
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
Unused parameters:
cellname, debug, message.
"""
sec = self.section
psd = []
sec.push()
for k in range(0, nReceptors):
psd.append(h.GLY2(loc, sec))
h.pop_section()
par = ["alpha", "beta"]
p = []
for n in par:
p.append(eval("psd[0]." + n)) # get default values from the mod file
return (psd, par, p)
def template_Gly_PSD_State_Glya5(
self, debug=False, nReceptors=2, psdtype=None, message=None, loc=0.5
):
"""
Template to build PSD using state model of glycine receptors, model glya5.mod
Parameters
----------
nReceptors : int, default=2
number of sites to implement
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
Unused parameters:
cellname, debug, message, psdtype.
"""
sec = self.section
psd = []
sec.push()
for k in range(0, nReceptors):
psd.append(h.GLYa5(loc, sec))
h.pop_section()
par = {
"kf1": ("r", psd[0].kf1), # retreive values in the MOD file
"kf2": ("r", psd[0].kf2),
"kb1": ("r", psd[0].kb1),
"kb2": ("r", psd[0].kb2),
"a1": ("f", psd[0].a1),
"b1": ("f", psd[0].b1),
"a2": ("f", psd[0].a2),
"b2": ("f", psd[0].b2),
}
return (psd, par)
def template_Gly_PSD_State_Gly6S(
self, debug=False, nReceptors=2, psdtype=None, message=None, loc=0.5
):
"""
Template to build PSD using state model of glycine receptors, model gly6s.mod
Parameters
----------
nReceptors : int, default=2
number of sites to implement
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
psdtype : str, default=None
resets the psd type to have slow kinetics if 'glyslow'. Any other string
defaults to kinetics in the mod file.
Unused parameters:
cellname, debug, message.
"""
sec = self.section
psd = []
sec.push()
for k in range(0, nReceptors):
psd.append(
h.Gly6S(loc, sec)
) # simple using Trussell model 6 states with desens
if debug:
print("Gly6S psdtype: ", psdtype)
if (
psdtype == "glyslow"
): # fit on 8 March 2010, error = 0.164, max open: 0.155
psd[-1].Rd = 1.177999
psd[-1].Rr = 0.000005
psd[-1].Rb = 0.009403
psd[-1].Ru2 = 0.000086
psd[-1].Ro1 = 0.187858
psd[-1].Ro2 = 1.064426
psd[-1].Ru1 = 0.028696
psd[-1].Rc1 = 0.103625
psd[-1].Rc2 = 1.730578
h.pop_section()
par = {
"Rb": ("n", psd[0].Rb), # retrive values in the MOD file
"Ru1": ("r", psd[0].Ru1),
"Ru2": ("r", psd[0].Ru2),
"Rd": ("f", psd[0].Rd),
"Rr": ("f", psd[0].Rr),
"Ro1": ("f", psd[0].Ro1),
"Ro2": ("r", psd[0].Ro2),
"Rc1": ("f", psd[0].Rc1),
"Rc2": ("r", psd[0].Rc2),
}
return (psd, par)
def template_Gly_PSD_State_PL(
self,
debug=False,
nReceptors=2,
cellname=None,
psdtype=None,
message=None,
loc=0.5,
):
"""
Template to build PSD using state model of glycine receptors, model glypl.mod
Parameters
----------
nReceptors : int, default=2
number of sites to implement
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
psdtype : str, default=None
resets the psd type to have slow kinetics if 'glyslow'.
'glyfast' forces fast kinetics.
Any other string defaults to the default kinetics in the mod file.
Unused parameters:
cellname, debug, message,.
"""
sec = self.section
psd = []
sec.push()
for k in range(0, nReceptors):
psd.append(h.GLYaPL(loc, sec)) # simple dextesche glycine receptors
if debug:
print("PL psdtype: ", psdtype)
if psdtype == "glyslow":
psd[-1].a1 = 0.000451
psd[-1].a2 = 0.220
psd[-1].b1 = 13.27
psd[-1].b2 = 6.845
psd[-1].kon = 0.00555
psd[-1].koff = 2.256
psd[-1].r = 1.060
psd[-1].d = 55.03
if (
psdtype == "glyfast"
): # fit from 3/5/2010. error = 0.174 maxopen = 0.0385
psd[-1].a1 = 1.000476
psd[-1].a2 = 0.137903
psd[-1].b1 = 1.700306
psd[-1].koff = 13.143132
psd[-1].kon = 0.038634
psd[-1].r = 0.842504
psd[-1].b2 = 8.051435
psd[-1].d = 12.821820
h.pop_section()
par = {
"kon": ("r", psd[0].kon), # retrive values in the MOD file
"koff": ("r", psd[0].koff),
"a1": ("r", psd[0].a1),
"b1": ("r", psd[0].b1),
"a2": ("f", psd[0].a2),
"b2": ("f", psd[0].b2),
"r": ("f", psd[0].r),
"d": ("f", psd[0].d),
}
return (psd, par)
def template_Gly_PSD_State_GC(
self, debug=False, nReceptors=2, psdtype=None, message=None, loc=0.5
):
"""
Template to build PSD using state model of glycine receptors, model glyaGC.mod
Parameters
----------
nReceptors : int, default=2
number of sites to implement
loc : float, default=0.5
Position on the postsynaptic section to insert the mechanism, from [0..1].
psdtype : str, default=None
resets the psd type to have slow kinetics if 'glyslow'. Any other string
defaults to predefined kinetics in the mod file.
Unused parameters:
cellname, debug, message, psdtype.
"""
sec = self.section
psd = []
sec.push()
for k in range(0, nReceptors):
psd.append(h.GLYaGC(loc, sec)) # simple Dextesche glycine receptors
if psdtype == "glyslow":
psd[-1].k1 = 12.81 # (/uM /ms) : binding
psd[-1].km1 = 0.0087 # (/ms) : unbinding
psd[-1].a1 = 0.0195 # (/ms) : opening
psd[-1].b1 = 1.138 # (/ms) : closing
psd[-1].r1 = 6.13 # (/ms) : desense 1
psd[-1].d1 = 0.000462 # (/ms) : return from d1
psd[-1].r2 = 0.731 # (/ms) : return from deep state
psd[-1].d2 = 1.65 # (/ms) : going to deep state
psd[-1].r3 = 3.83 # (/ms) : return from deep state
psd[-1].d3 = 1.806 # (/ms) : going to deep state
psd[-1].rd = 1.04 # (/ms)
psd[-1].dd = 1.004 # (/ms)
h.pop_section()
par = {
"k1": ("r", psd[0].k1), # retrive values in the MOD file
"km1": ("r", psd[0].km1),
"a1": ("r", psd[0].a1),
"b1": ("r", psd[0].b1),
"r1": ("f", psd[0].r1),
"d1": ("f", psd[0].d1),
"r2": ("f", psd[0].r2),
"d2": ("f", psd[0].d2),
"r3": ("f", psd[0].r3),
"d3": ("f", psd[0].d3),
"rd": ("f", psd[0].rd),
"dd": ("f", psd[0].dd),
}
return (psd, par)