model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

208 lines
7.1 KiB

import math
import numpy as np
# import matplotlib
# import matplotlib.pyplot as plt
# import matplotlib.ticker as tckr
# import matplotlib.transforms as mtransforms
# import matplotlib.mlab as mlab
# An alpha version of the Talbot, Lin, Hanrahan tick mark generator for matplotlib.
# Described in "An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes"
# by Justin Talbot, Sharon Lin, and Pat Hanrahan, InfoVis 2010.
# Implementation by Justin Talbot
# This implementation is in the public domain.
# Report bugs to jtalbot@stanford.edu
# A shortcoming:
# The weights used in the paper were designed for static plots where the extent of
# the tick marks unioned with the extent of the data defines the extent of the plot.
# In a plot where the extent of the plot is defined by the user (e.g. an interactive
# plot supporting panning and zooming), the weights don't work as well. In particular,
# you would want to retune them assuming that the tick labels must be inside
# the provided view range. You probably want higher weighting on simplicity and lower
# on coverage and possibly density. But I haven't experimented in any detail with this.
#
# If you do intend on using this for static plots in matplotlib, you should set
# only_inside to False in the call to Extended.extended. And then you should
# manually set your view extent to include the min and max ticks if they are outside
# the data range. This should produce the same results as the paper.
# class Extended(tckr.Locator):
class Extended:
# density is labels per inch
def __init__(self, density=1, steps=None, figure=None, range=(0, 1), axis="x"):
"""
Keyword args:
"""
self._density = density
self._figure = figure
self._axis = axis
self.range = range
if steps is None:
self._steps = [1, 5, 2, 2.5, 4, 3]
else:
self._steps = steps
def coverage(self, dmin, dmax, lmin, lmax):
range = dmax - dmin
return 1 - 0.5 * (
math.pow(dmax - lmax, 2) + math.pow(dmin - lmin, 2)
) / math.pow(0.1 * range, 2)
def coverage_max(self, dmin, dmax, span):
range = dmax - dmin
if span > range:
half = (span - range) / 2.0
return 1 - math.pow(half, 2) / math.pow(0.1 * range, 2)
else:
return 1
def density(self, k, m, dmin, dmax, lmin, lmax):
r = (k - 1.0) / (lmax - lmin)
rt = (m - 1.0) / (max(lmax, dmax) - min(lmin, dmin))
return 2 - max(r / rt, rt / r)
def density_max(self, k, m):
if k >= m:
return 2 - (k - 1.0) / (m - 1.0)
else:
return 1
def simplicity(self, q, Q, j, lmin, lmax, lstep):
eps = 1e-10
n = len(Q)
i = Q.index(q) + 1
v = (
1
if (
(lmin % lstep < eps or (lstep - lmin % lstep) < eps)
and lmin <= 0
and lmax >= 0
)
else 0
)
return (n - i) / (n - 1.0) + v - j
def simplicity_max(self, q, Q, j):
n = len(Q)
i = Q.index(q) + 1
v = 1
return (n - i) / (n - 1.0) + v - j
def legibility(self, lmin, lmax, lstep):
return 1
def legibility_max(self, lmin, lmax, lstep):
return 1
def extended(
self,
dmin,
dmax,
m,
Q=[1, 5, 2, 2.5, 4, 3],
only_inside=False,
w=[0.25, 0.2, 0.5, 0.05],
):
n = len(Q)
best_score = -2.0
j = 1.0
while j < float("infinity"):
for q in Q:
sm = self.simplicity_max(q, Q, j)
if w[0] * sm + w[1] + w[2] + w[3] < best_score:
j = float("infinity")
break
k = 2.0
while k < float("infinity"):
dm = self.density_max(k, m)
if w[0] * sm + w[1] + w[2] * dm + w[3] < best_score:
break
delta = (dmax - dmin) / (k + 1.0) / j / q
z = math.ceil(math.log(delta, 10))
while z < float("infinity"):
step = j * q * math.pow(10, z)
cm = self.coverage_max(dmin, dmax, step * (k - 1.0))
if w[0] * sm + w[1] * cm + w[2] * dm + w[3] < best_score:
break
min_start = math.floor(dmax / step) * j - (k - 1.0) * j
max_start = math.ceil(dmin / step) * j
if min_start > max_start:
z = z + 1
break
for start in range(int(min_start), int(max_start) + 1):
lmin = start * (step / j)
lmax = lmin + step * (k - 1.0)
lstep = step
s = self.simplicity(q, Q, j, lmin, lmax, lstep)
c = self.coverage(dmin, dmax, lmin, lmax)
d = self.density(k, m, dmin, dmax, lmin, lmax)
l = self.legibility(lmin, lmax, lstep)
score = w[0] * s + w[1] * c + w[2] * d + w[3] * l
if score > best_score and (
not only_inside or (lmin >= dmin and lmax <= dmax)
):
best_score = score
best = (lmin, lmax, lstep, q, k)
z = z + 1
k = k + 1
j = j + 1
return best
def __call__(self):
vmin, vmax = self.range # self.axis.get_view_interval()
fsize = {"x": 5.0, "y": 4.0}
size = fsize[self._axis] # self._figure.get_size_inches()[self._axis]
# density * size gives target number of intervals,
# density * size + 1 gives target number of tick marks,
# the density function converts this back to a density in data units (not inches)
# should probably make this cleaner.
best = self.extended(
vmin,
vmax,
self._density * size + 1.0,
only_inside=True,
w=[0.25, 0.2, 0.5, 0.05],
)
locs = np.arange(best[4]) * best[2] + best[0]
return locs
if __name__ == "__main__":
pass
# fig = plt.figure()
# ax = fig.add_subplot(111)
# ax.plot(10*np.random.randn(100), 10*np.random.randn(100), 'o')
#
# xmin, xmax = ax.xaxis.get_data_interval()
# xrange = xmax-xmin
# xmin, xmax = (xmin - xrange * 0.05, xmax + xrange * 0.05)
#
# ymin, ymax = ax.yaxis.get_data_interval()
# yrange = ymax-ymin
# ymin, ymax = (ymin - yrange * 0.05, ymax + yrange * 0.05)
#
# ax.xaxis.set_view_interval(xmin, xmax, ignore=True)
# ax.yaxis.set_view_interval(ymin, ymax, ignore=True)
# ax.xaxis.set_major_locator(Extended(density=0.5, figure=fig, which=0))
# ax.yaxis.set_major_locator(Extended(density=0.5, figure=fig, which=1))
#
# ax.set_title('Talbot, Lin, Hanrahan 2010')
#
# plt.show()