You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.7 KiB
178 lines
5.7 KiB
from multiprocessing import Pool |
|
from random import randint |
|
from cnmodel import cells |
|
from neuron import h, gui |
|
from tqdm import tqdm |
|
# from pprint import pprint |
|
|
|
|
|
def run(run_input, processes): |
|
results = [] |
|
if processes == 1: |
|
for input in run_input: |
|
results.append(_run_trial(input)) |
|
else: |
|
p = Pool(processes) |
|
for res in tqdm(p.imap_unordered(_run_trial, run_input)): |
|
results.append(res) |
|
return results |
|
|
|
|
|
def add_pyramidal_cell(): |
|
pyramidal = cells.Pyramidal.create(species="rat") |
|
|
|
return pyramidal |
|
|
|
def add_pyram_dend(pyramidal): |
|
pyramidal.add_dendrites() |
|
apical_dend = pyramidal.maindend[0] |
|
basal_dend = pyramidal.maindend[1] |
|
apical_dend.L = 1 |
|
basal_dend.L = 179 |
|
return apical_dend,basal_dend |
|
|
|
|
|
def add_tuberculoventral_cell(): |
|
tuberculoventral_1 = cells.Tuberculoventral.create() |
|
tuberculoventral_2 = cells.Tuberculoventral.create() |
|
return tuberculoventral_1, tuberculoventral_2 |
|
|
|
|
|
def add_dstellate_cell(): |
|
dstellate = cells.DStellateEager.create() |
|
return dstellate |
|
|
|
def add_dstel_dend(dstellate): |
|
dstellate.add_dendrites() |
|
d_apic_dend = dstellate.maindend[0] |
|
d_basal_dend = dstellate.maindend[1] |
|
|
|
return d_apic_dend,d_basal_dend |
|
|
|
def add_dstel_axon(dstellate): |
|
dstellate.add_axon() |
|
d_axon = dstellate.axon |
|
# d_axon.L = 2 |
|
|
|
return d_axon |
|
|
|
|
|
def _run_trial(run_input): |
|
seed, info, run_number = run_input |
|
""" |
|
info is a dict |
|
""" |
|
pyramidal = add_pyramidal_cell() |
|
tuberculoventral_1, tuberculoventral_2 = add_tuberculoventral_cell() |
|
dstellate = add_dstellate_cell() |
|
|
|
d_apic_dend,d_basal_dend = add_dstel_dend(dstellate) |
|
pyram_apical,pyram_basal = add_pyram_dend(pyramidal) |
|
|
|
d_axon = add_dstel_axon(dstellate) |
|
|
|
|
|
auditory_nerve_cells = [] |
|
synapses = [] |
|
inhib_synapses = [] |
|
# auditory nerve attachments |
|
# attach to pyramidal cell |
|
for nsgc in range(48): |
|
auditory_nerve_cells.append(cells.DummySGC(cf=info["cf"], sr=info["sr"])) |
|
synapses.append(auditory_nerve_cells[-1].connect(pyramidal, post_opts={"postsite":[pyram_basal, 1]}, type="multisite")) |
|
auditory_nerve_cells[-1].set_sound_stim( |
|
info["stim"], |
|
seed=seed + nsgc + randint(0, 80000), |
|
simulator=info["simulator"], |
|
) |
|
attach to tuberculoventral 1 |
|
for nsgc in range(18): |
|
# attach to tb cell |
|
auditory_nerve_cells.append(cells.DummySGC(cf=info["cf"], sr=info["sr"])) |
|
synapses.append(auditory_nerve_cells[-1].connect(tuberculoventral_1, type="multisite")) |
|
auditory_nerve_cells[-1].set_sound_stim( |
|
info["stim"], |
|
seed=seed + nsgc + randint(0, 80000), |
|
simulator=info["simulator"], |
|
) |
|
# attach to tuberculoventral 2 |
|
for nsgc in range(18): |
|
# attach to tb cell |
|
auditory_nerve_cells.append(cells.DummySGC(cf=info["cf"], sr=info["sr"])) |
|
synapses.append(auditory_nerve_cells[-1].connect(tuberculoventral_2, type="multisite")) |
|
auditory_nerve_cells[-1].set_sound_stim( |
|
info["stim"], |
|
seed=seed + nsgc + randint(0, 80000), |
|
simulator=info["simulator"], |
|
) |
|
for nsgc in range(24): |
|
# attach to dstellate cell |
|
auditory_nerve_cells.append(cells.DummySGC(cf=info["cf"], sr=info["sr"])) |
|
synapses.append(auditory_nerve_cells[-1].connect(dstellate, post_opts={"postsite":[d_apic_dend, 1]}, type="multisite")) |
|
auditory_nerve_cells[-1].set_sound_stim( |
|
info["stim"], |
|
seed=seed + nsgc + randint(0, 80000), |
|
simulator=info["simulator"], |
|
) |
|
Connections between network cells |
|
for _ in range(5): |
|
inhib_synapses.append(cartwheel.connect(pyramidal, type="simple")) |
|
for _ in range(21): |
|
inhib_synapses.append(tuberculoventral_1.connect(pyramidal, post_opts={"postsite":[pyram_basal, 1]}, type="multisite")) |
|
inhib_synapses.append(tuberculoventral_2.connect(pyramidal, post_opts={"postsite":[pyram_basal, 1]}, type="multisite")) |
|
for _ in range(15): |
|
inhib_synapses.append(dstellate.connect(pyramidal, post_opts={"postsite":[pyram_basal, 1], "presite":[d_axon, 1]}, type="multisite")) |
|
inhib_synapses.append(dstellate.connect(tuberculoventral_1, type='simple')) |
|
inhib_synapses.append(dstellate.connect(tuberculoventral_2, type='simple')) |
|
for _ in range(3): |
|
inhib_synapses.append(dstellate.connect(dstellate, post_opts={"postsite":[d_basal_dend, 1], "presite":[d_axon, 1]}, type="simple")) |
|
stim = insert_current_clamp(pyramidal.soma) |
|
|
|
# set up our recording vectors for each cell |
|
Vm = h.Vector() |
|
Vm.record(pyramidal.soma(0.5)._ref_v) |
|
Vmtb = h.Vector() |
|
Vmtb.record(tuberculoventral_1.soma(0.5)._ref_v) |
|
Vmds = h.Vector() |
|
Vmds.record(dstellate.soma(0.5)._ref_v) |
|
rtime = h.Vector() |
|
rtime.record(h._ref_t) |
|
# hoc trial run |
|
h.tstop = 1e3 * info["run_duration"] # duration of a run |
|
h.celsius = info["temp"] |
|
h.dt = info["dt"] |
|
init_cells([pyramidal, tuberculoventral_1, tuberculoventral_2, dstellate]) |
|
info["init"]() |
|
h.t = 0.0 |
|
# h.run() |
|
|
|
# dtime = time.time() - start |
|
# print(f"Trial {run_number} completed after {dtime} secs") |
|
|
|
return { |
|
"time": list(rtime), |
|
"vm": list(Vm), |
|
"auditory_nerve_cells": [x._spiketrain.tolist() for x in auditory_nerve_cells], |
|
"vmtb": list(Vmtb), |
|
"vmds": list(Vmds), |
|
} |
|
|
|
|
|
def insert_current_clamp(sec): |
|
""" |
|
:param sec: to attach too |
|
dur: ms |
|
amp: nA |
|
delay: ms |
|
:return: stim needs to be put in a variable to stay alive |
|
""" |
|
stim = h.IClamp(0.5, sec=sec) |
|
stim.dur = 30 |
|
stim.amp = -0.2 |
|
stim.delay = 120 |
|
return stim |
|
|
|
|
|
def init_cells(cell: list): |
|
for x in cell: |
|
x.cell_initialize()
|
|
|