model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

47 lines
1.3 KiB

from __future__ import print_function
from neuron import h
import neuron as nrn
from ..util import nstomho
from .cell import Cell
__all__ = ["HH"]
class HH(Cell):
"""
Standard Hodgkin-Huxley mechanisms from NEURON
"""
def __init__(self, debug=False, message=None):
super(HH, self).__init__()
soma = h.Section(
name="HH_Soma_%x" % id(self)
) # one compartment of about 29000 um2
v_potassium = -80 # potassium reversal potential
v_sodium = 50 # sodium reversal potential
c_m = 1.0
scalefactor = 1.0 # This determines the relative size of the cell
rinsf = 1.0 # input resistance adjustment (also current...)
totcap = 20.0 # scalefactor * 1.0 # cap in pF for cell
effcap = totcap # sometimes we change capacitance - that's effcap
somaarea = totcap * 1e-6 / c_m # pf -> uF, cm = 1uf/cm^2 nominal
lstd = 1e4 * ((somaarea / 3.14159) ** 0.5) # convert from cm to um
soma.nseg = 1
soma.diam = lstd
soma.L = lstd
seg = soma
seg.insert("hh")
seg.insert("pas")
if debug:
if message is None:
print("<< Standard HH model created >>")
else:
print(message)
self.add_section(soma, "soma")
self.vm0 = -67.536