model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

147 lines
3.2 KiB

TITLE detailed model of Glycine receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of Glycine-A receptors
====================================
C -- C1 -- C2
| |
O1 O2
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
Based on models
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe, Laval University, 1995
-----------------------------------------------------------------------------
Modified Paul Manis, UNC Chapel Hill, 2009
Changed name, pointer name, kinetics are range variables, and kinetic values
are estimated from VCN glycine receptors.
This model does not have a desensitization state.
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS GLYa5
POINTER XMTR
RANGE C0, C1, C2, O1, O2, Open
RANGE g, gmax, f1, f2
RANGE Erev
RANGE kf1, kf2, kb1, kb2, a1, b1, a2, b2
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = -70 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
: Rates
: from fits to averaged ipsc data, stellate cells 1/1/10
: kf1 = 0.002930 (/uM /ms) : binding
: kf2 = 0.005936 (/uM /ms) : binding
: kb1 = 2.793 (/ms) : unbinding
: kb2 = 1.445 (/ms) : unbinding
: a1 = 1e-6 (/ms) : opening
: b1 = 129.0 (/ms) : closing
: a2 = 5.10 (/ms) : opening
: b2 = 2.79 (/ms) : closing
: from fits to averaged ipsc data, bushy cells 1/1/10
kf1 = 0.0278 (/uM /ms) : binding
kf2 = 1e-6 (/uM /ms) : binding
kb1 = 0.000054 (/ms) : unbinding
kb2 = 0.000855 (/ms) : unbinding
a1 = 1e-6 (/ms) : opening
b1 = 129.0 (/ms) : closing
a2 = 5.10 (/ms) : opening
b2 = 2.79 (/ms) : closing
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
XMTR (mM) : pointer to glycine concentration
f1 (/ms) : binding
f2 (/ms) : binding
Open (1)
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
O1 : open
O2 : open
}
INITIAL {
C0 = 1
C1 = 0
C2 = 0
O1 = 0
O2 = 0
XMTR = 0.0
}
BREAKPOINT {
SOLVE kstates METHOD sparse
Open = (O1 + O2)
g = gmax * Open
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
f1 = kf1 * (1e3) * XMTR
f2 = kf2 * (1e3) * XMTR
~ C0 <-> C1 (f1,kb1)
~ C1 <-> C2 (f2,kb2)
~ C1 <-> O1 (a1,b1)
~ C2 <-> O2 (a2,b2)
CONSERVE C0+C1+C2+O1+O2 = 1
}