model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

125 lines
4.5 KiB

__author__ = "pbmanis"
"""
ccstim
Generate current-clamp (or voltage-clamp) stimulus waveforms from a dictionary
used for vectory play modes in current clamp
(prior version was called 'makestim')
Can generate several types of pulses
"""
import numpy as np
def ccstim(stim, dt, pulsetype="square"):
"""
Create stimulus pulse waveforms of different types.
Parameters
----------
stim : dict
a dictionary with keys [required]
delay (delay to start of pulse train, msec [all]
duration: duration of pulses in train, msec [all]
Sfreq: stimulus train frequency (Hz) [timedSpikes]
PT: post-train test delay [all]
NP: number of pulses in the train [timedSpikes, exp]
amp: amplitude of the pulses in the train [all]
hypamp: amplitude of prehyperpolarizing pulse [hyp]
hypdur: duration of prehyperpolarizing pulse [hyp]
spikeTimes" times of spikes [timedSpikes]
dt : time (microseconds) [required]
step time, in microseconds. Required parameter
pulsetype : string (default: 'square')
Type of pulse to generate: one of square, hyp, timedspikes or exp
square produces a train of "square" (retangular) pulses levels 0 and ampitude
hyp is like square, but precedes the pulse train with a single prepulse
of hypamp and hypdur
timedspikes is like square, excpet the pulses are generated at times specified
in the spikeTimes key in the stim dictionary
exp: pulses with an exponential decay.
TO DO:
add pulsetypes, including sine wave, rectified sine wave, etc.
Returns
-------
list containing [waveform (numpy array),
maxtime(float),
timebase (numpy array)]
"""
assert dt is not None
assert "delay" in stim.keys()
delay = int(np.floor(stim["delay"] / dt))
if pulsetype in ["square", "hyp", "exp"]:
ipi = int(np.floor((1000.0 / stim["Sfreq"]) / dt))
pdur = int(np.floor(stim["duration"] / dt))
posttest = int(np.floor(stim["PT"] / dt))
if pulsetype not in ["timedSpikes"]:
NP = int(stim["NP"])
else:
NP = len(stim["spikeTimes"])
tstims = [0] * NP
if pulsetype == "hyp":
assert "hypamp" in stim.keys()
assert "hypdur" in stim.keys()
hypdur = int(np.floor(stim["hypdur"] / dt))
delay0 = delay # save original delay
if pulsetype in ["square", "hyp"]:
maxt = dt * (stim["delay"] + (ipi * (NP + 2)) + posttest + pdur * 2)
if pulsetype == "hyp":
maxt = maxt + dt * stim["hypdur"]
delay = delay + hypdur
w = np.zeros(int(np.floor(maxt / dt)))
for j in range(0, NP):
t = (delay + j * ipi) * dt
w[delay + ipi * j : delay + (ipi * j) + pdur] = stim["amp"]
tstims[j] = delay + ipi * j
if stim["PT"] > 0.0:
send = delay + ipi * j
for i in range(send + posttest, send + posttest + pdur):
w[i] = stim["amp"]
if pulsetype == "hyp": # fill in the prepulse now
for i in range(delay0, delay0 + hypdur):
w[i] = stim["hypamp"]
if pulsetype == "timedSpikes":
maxt = np.max(stim["spikeTimes"]) + stim["PT"] + stim["duration"] * 2
w = np.zeros(int(np.floor(maxt / dt)))
for j in range(len(stim["spikeTimes"])):
st = delay + int(np.floor(stim["spikeTimes"][j] / dt))
t = st * dt
w[st : st + pdur] = stim["amp"]
tstims[j] = st
if stim["PT"] > 0.0:
for i in range(st + posttest, st + posttest + pdur):
w[i] = stim["amp"]
if pulsetype == "exp":
maxt = dt * (stim["delay"] + (ipi * (NP + 2)) + posttest + pdur * 2)
w = np.zeros(int(np.floor(maxt / dt)))
for j in range(0, NP):
for i in range(0, len(w)):
if delay + ipi * j + i < len(w):
w[delay + ipi * j + i] = w[delay + ipi * j + i] + stim["amp"] * (
(1.0 - np.exp(-i / (pdur / 3.0)))
* np.exp(-(i - (pdur / 3.0)) / pdur)
)
tstims[j] = delay + ipi * j
if stim["PT"] > 0.0:
send = delay + ipi * j
for i in range(send + posttest, len(w)):
w[i] += (
stim["amp"]
* (1.0 - np.exp(-i / (pdur / 3.0)))
* np.exp(-(i - (pdur / 3.0)) / pdur)
)
return (w, maxt, tstims)