model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

1415 lines
40 KiB

"""
Tools for generating auditory stimuli.
"""
from __future__ import division
import numpy as np
import scipy
import scipy.io.wavfile
import resampy
def create(type, **kwds):
""" Create a Sound instance using a key returned by Sound.key().
"""
cls = globals()[type]
return cls(**kwds)
class Sound(object):
"""
Base class for all sound stimulus generators.
"""
def __init__(self, duration, rate=100e3, **kwds):
"""
Parameters
----------
duration: float (no default):
duration of the stimulus, in seconds
rate : float (default: 100000.)
sample rate for sound generation
"""
self.opts = {"rate": rate, "duration": duration}
self.opts.update(kwds)
self._time = None
self._sound = None
@property
def sound(self):
"""
:obj:`array`: The generated sound array, expressed in Pascals.
"""
if self._sound is None:
self._sound = self.generate()
return self._sound
@property
def time(self):
"""
:obj:`array`: The array of time values, expressed in seconds.
"""
if self._time is None:
self._time = np.linspace(0, self.opts["duration"], self.num_samples)
return self._time
@property
def num_samples(self):
"""
int: The number of samples in the sound array.
"""
return 1 + int(self.opts["duration"] * self.opts["rate"])
@property
def dt(self):
"""
float: the sample period (time step between samples).
"""
return 1.0 / self.opts["rate"]
@property
def duration(self):
"""
float: The duration of the sound
"""
return self.opts["duration"]
def key(self):
"""
The sound can be recreated using ``create(**key)``.
:obj:`dict`: Return dict of parameters needed to completely describe this sound.
"""
k = self.opts.copy()
k["type"] = self.__class__.__name__
return k
def measure_dbspl(self, tstart, tend):
"""
Measure the sound pressure for the waveform in a window of time
Parameters
----------
tstart :
time to start spl measurement (seconds).
tend :
ending time for spl measurement (seconds).
Returns
-------
float : The measured amplitude (dBSPL) of the sound from tstart to tend
"""
istart = int(tstart * self.opts["rate"])
iend = int(tend * self.opts["rate"])
return pa_to_dbspl(self.sound[istart:iend].std())
def generate(self):
"""
Generate and return the sound output. This method is defined by subclasses.
"""
raise NotImplementedError()
def __getattr__(self, name):
if "opts" not in self.__dict__:
raise AttributeError(name)
if name in self.opts:
return self.opts[name]
else:
return object.__getattr__(self, name)
class TonePip(Sound):
""" Create one or more tone pips with cosine-ramped edges.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sound
f0 : float or array-like
Tone frequency in Hz. Must be less than half of the sample rate.
dbspl : float
Maximum amplitude of tone in dB SPL.
pip_duration : float
Duration of each pip including ramp time. Must be at least
2 * ramp_duration.
pip_start : array-like
Start times of each pip
ramp_duration : float
Duration of a single ramp period (from minimum to maximum).
This may not be more than half of pip_duration.
"""
def __init__(self, **kwds):
reqdWords = [
"rate",
"duration",
"f0",
"dbspl",
"pip_duration",
"pip_start",
"ramp_duration",
]
for k in reqdWords:
if k not in kwds.keys():
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["f0"] > kwds["rate"] * 0.5:
raise ValueError("f0 must be less than (0.5 * rate).")
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to compute the tone pips
Returns
-------
array :
generated waveform
"""
o = self.opts
return piptone(
self.time,
o["ramp_duration"],
o["rate"],
o["f0"],
o["dbspl"],
o["pip_duration"],
o["pip_start"],
)
class FMSweep(Sound):
""" Create an FM sweep with either linear or logarithmic rates,
of a specified duration between two frequencies.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sweep
start : float
t times of each pip
freqs : list
[f0, f1]: the start and stop times for the sweep
ramp : string
valid input for type of sweep (linear, logarithmic, etc)
dbspl : float
Maximum amplitude of pip in dB SPL.
"""
def __init__(self, **kwds):
for k in ["rate", "duration", "start", "freqs", "ramp", "dbspl"]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to actually compute the the FM sweep
Returns
-------
array :
generated waveform
"""
o = self.opts
return fmsweep(
self.time, o["start"], o["duration"], o["freqs"], o["ramp"], o["dbspl"]
)
class NoisePip(Sound):
""" One or more noise pips with cosine-ramped edges.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sound
seed : int >= 0
Random seed
dbspl : float
Maximum amplitude of tone in dB SPL.
pip_duration : float
Duration of each pip including ramp time. Must be at least
2 * ramp_duration.
pip_start : array-like
Start times of each pip
ramp_duration : float
Duration of a single ramp period (from minimum to maximum).
This may not be more than half of pip_duration.
"""
def __init__(self, **kwds):
for k in [
"rate",
"duration",
"dbspl",
"pip_duration",
"pip_start",
"ramp_duration",
"seed",
]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["seed"] < 0:
raise ValueError("Random seed must be integer > 0")
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to compute the noise pips
Returns
-------
array :
generated waveform
"""
o = self.opts
return pipnoise(
self.time,
o["ramp_duration"],
o["rate"],
o["dbspl"],
o["pip_duration"],
o["pip_start"],
o["seed"],
)
class ClickTrain(Sound):
""" One or more clicks (rectangular pulses).
Parameters
----------
rate : float
Sample rate in Hz
dbspl : float
Maximum amplitude of click in dB SPL.
click_duration : float
Duration of each click including ramp time. Must be at least
1/rate.
click_starts : array-like
Start times of each click
"""
def __init__(self, **kwds):
for k in ["rate", "duration", "dbspl", "click_duration", "click_starts"]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["click_duration"] < 1.0 / kwds["rate"]:
raise ValueError("click_duration must be greater than sample rate.")
Sound.__init__(self, **kwds)
def generate(self):
o = self.opts
return clicks(
self.time, o["rate"], o["dbspl"], o["click_duration"], o["click_starts"]
)
class SAMNoise(Sound):
""" One or more gaussian noise pips with cosine-ramped edges.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sound
seed : int >= 0
Random seed
dbspl : float
Maximum amplitude of pip in dB SPL.
pip_duration : float
Duration of each pip including ramp time. Must be at least
2 * ramp_duration.
pip_start : array-like
Start times of each pip
ramp_duration : float
Duration of a single ramp period (from minimum to maximum).
This may not be more than half of pip_duration.
fmod : float
SAM modulation frequency
dmod : float
Modulation depth
"""
def __init__(self, **kwds):
parms = [
"rate",
"duration",
"seed",
"pip_duration",
"pip_start",
"ramp_duration",
"fmod",
"dmod",
"seed",
]
for k in parms:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["seed"] < 0:
raise ValueError("Random seed must be integer > 0")
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to compute the SAM noise
Returns
-------
array :
generated waveform
"""
o = self.opts
o["phaseshift"] = 0.0
return modnoise(
self.time,
o["ramp_duration"],
o["rate"],
o["f0"],
o["pip_duration"],
o["pip_start"],
o["dbspl"],
o["fmod"],
o["dmod"],
0.0,
o["seed"],
)
class SAMTone(Sound):
""" SAM tones with cosine-ramped edges.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sound
f0 : float or array-like
Tone frequency in Hz. Must be less than half of the sample rate.
dbspl : float
Maximum amplitude of tone in dB SPL.
pip_duration : float
Duration of each pip including ramp time. Must be at least
2 * ramp_duration.
pip_start : array-like
Start times of each pip
ramp_duration : float
Duration of a single ramp period (from minimum to maximum).
This may not be more than half of pip_duration.
fmod : float
SAM modulation frequency, Hz
dmod : float
Modulation depth, %
"""
def __init__(self, **kwds):
for k in [
"rate",
"duration",
"f0",
"dbspl",
"pip_duration",
"pip_start",
"ramp_duration",
"fmod",
"dmod",
]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["f0"] > kwds["rate"] * 0.5:
raise ValueError("f0 must be less than (0.5 * rate).")
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to compute a SAM tone
Returns
-------
array :
generated waveform
"""
o = self.opts
basetone = piptone(
self.time,
o["ramp_duration"],
o["rate"],
o["f0"],
o["dbspl"],
o["pip_duration"],
o["pip_start"],
)
return sinusoidal_modulation(
self.time, basetone, o["pip_start"], o["fmod"], o["dmod"], 0.0
)
def pa_to_dbspl(pa, ref=20e-6):
""" Convert Pascals (rms) to dBSPL. By default, the reference pressure is
20 uPa.
"""
return 20 * np.log10(pa / ref)
def dbspl_to_pa(dbspl, ref=20e-6):
""" Convert dBSPL to Pascals (rms). By default, the reference pressure is
20 uPa.
"""
return ref * 10 ** (dbspl / 20.0)
class SAMNoise(Sound):
""" One or more gaussian noise pips with cosine-ramped edges, sinusoidally modulated.
Parameters
----------
rate : float
Sample rate in Hz
duration : float
Total duration of the sound
seed : int >= 0
Random seed
dbspl : float
Maximum amplitude of pip in dB SPL.
pip_duration : float
Duration of each pip including ramp time. Must be at least
2 * ramp_duration.
pip_start : array-like
Start times of each pip
ramp_duration : float
Duration of a single ramp period (from minimum to maximum).
This may not be more than half of pip_duration.
fmod : float
SAM modulation frequency
dmod : float
Modulation depth
Returns
-------
array :
waveform
"""
def __init__(self, **kwds):
for k in [
"rate",
"duration",
"seed",
"pip_duration",
"pip_start",
"ramp_duration",
"fmod",
"dmod",
]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["seed"] < 0:
raise ValueError("Random seed must be integer > 0")
Sound.__init__(self, **kwds)
def generate(self):
o = self.opts
basenoise = pipnoise(
self.time,
o["ramp_duration"],
o["rate"],
o["dbspl"],
o["pip_duration"],
o["pip_start"],
o["seed"],
)
return sinusoidal_modulation(
self.time, basenoise, o["pip_start"], o["fmod"], o["dmod"], 0.0
)
class ComodulationMasking(Sound):
"""
Make a stimulus for comodulation masking release.
Note the parameter names are shortened so that the SGC generated filename
in cnmodel fits within system limits.
Parameters
----------
rate : float
sample rate, in Hz
dur : float
entire waveform duration in seconds
pipst : float
time to start the test tone pips (seconds)
array, such as [0.25, 0.35, 0.45]
pipdu : float
duration of the test (target) tone pips
maskst : float
time to start the masker tones pips (seconds)
array, such as [0.1]
maskdu : float
duration of the masker tone pips
rf : float
rise/fall of the pips
f0 : float (kHz)
Center frequency for the target tone, in kHz
db : float
on-target masker and flankinb band intensity
In dB SPL (re 0.00002 dynes/cm2)
s2n : float
signal re masker, in dbspl
fmod : float
amplitude modulation frequency, in Hz
dmod : float
amplitude modulation depth, in %
fltype : string
Flanking type:
One of:
'MultiTone' : multiple tones, with phase, spacing and # of bands specified as below
'NBNoise' : the flanking stimulus is made up of narrow band noises (not implemented)
'None' : no flanking sounds (just on-target stimuli)
flspc : float
Spacing of flanking bands in octaves from the center frequency, f0
flgap : int
gap around the cf in flspc (e.g., 1 would skip the first adjacent band)
flph : string
One of:
'Comodulated': all of the flanking tones are comodulated in phase
with the target at the same frequency and depth
'Codgh' : 'Grose and Hall codeviant':
The flanking bands have the same amplitude and frequency
as the target, but the phase of each band is different. Phases are
calculated so that all the bands wrap around 2*pi
'Codvw' : 'Verhey and Winter codeviant':
The flanking bands have the same amplitude and frequency
as the target, but are out of phase with the on-frequency masker
'Random': The phases are selected at random. This is probably best only
used when there are a large number of flanking bands.
flspl : float
Flanking signal, in dbspl.
flN : int
Number of flanking bands on either side of f0, spaced accordingly.
Returns
-------
array :
waveform
"""
def __init__(self, **kwds):
# print (kwds)
for k in [
"rate",
"duration",
"pipdu",
"pipst",
"rf",
"maskst",
"maskdu",
# general:
"f0",
"dbspl",
"s2n",
"fmod",
"dmod",
# flankers:
"flgap",
"fltype",
"flspc",
"flph",
"flN",
]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if "flspl" not in kwds:
kwds["flspl"] = kwds["dbspl"]
# if 'mask_spl' not in kwds:
# kwds['mask_spl'] = kwds['dbspl']
# if kwds['mask_spl'] is None:
# kwds['mask_spl'] = 0.
if kwds["flspl"] is None:
raise ValueError()
Sound.__init__(self, **kwds)
def generate(self):
o = self.opts
# start with center tone
onfreqmasker = piptone(
self.time, o["rf"], o["rate"], o["f0"], o["flspl"], o["maskdu"], o["maskst"]
)
tardelay = (
0.0
) # 1.5/o['fmod'] # delay by one and one half cycles (no target in first dip)
target = piptone(
self.time,
o["rf"],
o["rate"],
o["f0"],
o["dbspl"] + o["s2n"],
o["pipdu"] - tardelay,
[p + tardelay for p in o["pipst"]],
)
# target = shape_signal(onfreqmasker, self.time, o['rf'], o['rate'], o['f0'],
# o['dbspl']+o['s2n'], o['pipdu']-tardelay, [p + tardelay for p in o['pipst']])
if (o["dbspl"] + o["s2n"]) <= 0.0:
target = np.zeros_like(target)
onfreqmasker = sinusoidal_modulation(
self.time, onfreqmasker, o["maskst"], o["fmod"], o["dmod"], 0.0
)
# print("o['dbspl']+o['s2n']: ", o['dbspl']+o['s2n'])
# print('np.max(target): ', np.max(target))
# target = sinusoidal_modulation(self.time, target, [p + tardelay for p in o['pip_start']],
# o['fmod'], o['dmod'], 0.)
self.onmask = onfreqmasker
self.target = target
if o["fltype"] not in ["None", "Ref", "NBN", "Tone"]:
raise ValueError("Unknown flanking_type: %s" % o["fltype"])
if o["fltype"] in ["NBN"]:
raise ValueError('Flanking type "NBNoise" is not yet implemented')
elif o["fltype"] in ["None"]:
return (onfreqmasker + target) / 2.0 # scaling...
elif o["fltype"] in ["Tone"]:
nband = int(o["flN"])
gap = int(o["flgap"])
octspace = o["flspc"]
f0 = o["f0"]
flankfs = [f0 * (2 ** (octspace * (k + 1 + gap))) for k in range(nband)]
flankfs.extend(
[f0 / ((2 ** (octspace * (k + 1 + gap)))) for k in range(nband)]
)
flankfs = sorted(flankfs)
flanktone = [[]] * len(flankfs)
for i, fs in enumerate(flankfs):
flanktone[i] = piptone(
self.time,
o["rf"],
o["rate"],
flankfs[i],
o["flspl"],
o["maskdu"],
o["maskst"],
)
elif o["fltype"] in ["None", "Ref"]:
return (onfreqmasker + target) / 2.0 # scaling...
if o["fltype"] == "NBN":
raise ValueError("Flanking type nbnoise not yet implemented")
ph = 0.0
if o["flph"] == "Comod":
ph = np.zeros(len(flankfs))
elif o["flph"] == "Codvw": # verhey and winter: just 180 out of phase
ph = np.pi * np.ones(len(flankfs))
elif o["flph"] in ["Codgh", "Codev"]: # with precession: Grose and Hall 89
ph = 2.0 * np.pi * np.arange(-o["flN"], o["flN"] + 1, 1) / o["flN"]
elif o["flph"] == "Random":
ph = 2.0 * np.pi * np.arange(-o["flN"], o["flN"] + 1, 1) / o["flN"]
raise ValueError("Random flanking phases not implemented")
else:
raise ValueError(
"Masker Phase pattern of type %s is not implemented" % o["flph"]
)
# print(('flanking phases: ', ph))
# print (len(flanktone))
# print(('flanking freqs: ', flankfs))
for i, fs in enumerate(flankfs):
flanktone[i] = sinusoidal_modulation(
self.time, flanktone[i], o["maskst"], o["fmod"], o["dmod"], ph[i]
)
if i == 0:
maskers = flanktone[i]
else:
maskers = maskers + flanktone[i]
signal = (onfreqmasker + maskers + target) / (o["flN"] + 2)
return signal
class DynamicRipple(Sound):
def __init__(self, **kwds):
for k in ["rate", "duration"]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
# if kwds['pip_duration'] < kwds['ramp_duration'] * 2:
# raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
import DMR
self.dmr = DMR.DMR()
Sound.__init__(self, **kwds)
def generate(self):
"""
Call to compute a dynamic ripple stimulus
Returns
-------
array :
generated waveform
"""
o = self.opts
self.dmr.set_params(Fs=o["rate"], duration=o["duration"] + 1.0 / o["rate"])
self.dmr.make_waveform()
self._time = self.dmr.vTime # get time from the generator, not linspace
return self.dmr.vStim
class SpeechShapedNoise(Sound):
"""
Adapted from http://www.srmathias.com/speech-shaped-noise/
"""
def __init__(self, **kwds):
for k in ["rate", "duration", "waveform", "samplingrate"]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
# if kwds['pip_duration'] < kwds['ramp_duration'] * 2:
# raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
Sound.__init__(self, **kwds)
def generate(self):
o = self.opts
print("opts: ", o)
ssn, t = make_ssn(
o["rate"], o["duration"], o["waveform"].sound, o["samplingrate"]
)
self._time = t # override time array because we read a wave file
# if self.opts['duration'] == 0:
# self.opts['duration'] = np.max(t) - 1./o['rate']
return ssn
class RandomSpectrumShape(Sound):
"""
Random Spectral Shape stimuli
log-spaced tones
Amplitudes adjusted in groups of 4 or 8 (amp_group_size)
Amplitude SD (amp_sd)
Frequency range (octaves above and below f0) (octaves)
spacing (fraction of octave: e.g, 1/8 or 1/64 as 8 or 64) (spacing)
Generates one sample
Young and Calhoun, 2005
Yu and Young, 2000
"""
def __init__(self, **kwds):
for k in [
"rate",
"duration",
"f0",
"dbspl",
"pip_duration",
"pip_start",
"ramp_duration",
"amp_group_size",
"amp_sd",
"spacing",
"octaves",
]:
if k not in kwds:
raise TypeError("Missing required argument '%s'" % k)
if kwds["pip_duration"] < kwds["ramp_duration"] * 2:
raise ValueError("pip_duration must be greater than (2 * ramp_duration).")
if kwds["f0"] > kwds["rate"] * 0.5:
raise ValueError("f0 must be less than (0.5 * rate).")
Sound.__init__(self, **kwds)
def generate(self):
o = self.opts
octaves = o["octaves"]
lowf = o["f0"] / octaves
highf = o["f0"] * octaves
freqlist = np.logspace(
np.log2(lowf),
np.log2(highf),
num=o["spacing"] * octaves * 2,
endpoint=True,
base=2,
)
amplist = np.zeros_like(freqlist)
db = o["dbspl"]
# assign amplitudes
if db == None:
db = 80.0
groupsize = o["amp_group_size"]
for i in range(0, len(freqlist), groupsize):
if o["amp_sd"] > 0.0:
a = np.random.normal(scale=o["amp_sd"])
else:
a = 0.0
amplist[i : i + groupsize] = 20.0 * np.log10(a + db)
for i in range(len(freqlist)):
wave = piptone(
self.time,
o["ramp_duration"],
o["rate"],
freqlist[i],
amplist[i],
o["pip_duration"],
o["pip_start"],
pip_phase=np.pi * 2.0 * np.random.rand(),
)
if i == 0:
result = wave
else:
result = result + wave
return result / (np.sqrt(np.mean(result ** 2.0))) # scale by rms level
class ReadWavefile(Sound):
""" Read a .wav file from disk, possibly converting the sample rate and the scale
for use in driving the auditory nerve fiber model.
Parameters
----------
wavefile : str
name of the .wav file to read
rate : float
Sample rate in Hz (waveform will be resampled to this rate)
channel: int (default: 0)
If wavefile has 2 channels, select 0 or 1 for the channel to read
dbspl : float or None
If specified, the wave file is scaled such that its overall dBSPL
(measured from RMS of the entire waveform) is equal to this value.
Either ``dbspl`` or ``scale`` must be specified.
scale : float or None
If specified, the wave data is multiplied by this value to yield values in dBSPL.
Either ``dbspl`` or ``scale`` must be specified.
delay: float (default: 0.)
Silent delay time to start sound, in s. Allows anmodel and cells to run to steady-state
maxdur : float or None (default: None)
If specified, maxdur defines the total duration of generated waveform to return (in seconds).
If None, the generated waveform duration will be the sum of any delay value and
the duration of the waveform from the wavefile.
Returns
-------
array :
waveform
"""
def __init__(
self, wavefile, rate, channel=0, dbspl=None, scale=None, delay=0.0, maxdur=None
):
if dbspl is not None and scale is not None:
raise ValueError('Only one of "dbspl" or "scale" can be set')
duration = (
0.0
) # forced because of the way num_samples has to be calculated first
if delay < 0.0:
raise ValueError("ReadWavefile: delay must be > 0., got: %f" % delay)
if maxdur is not None and maxdur < 0:
raise ValueError(
"ReadWavefile: maxdur must be None or > 0., got: %f" % maxdur
)
Sound.__init__(
self,
duration,
rate,
wavefile=wavefile,
channel=channel,
dbspl=dbspl,
scale=scale,
maxdur=maxdur,
delay=delay,
)
def generate(self):
"""
Read the wave file from disk, clip duration, resample if necessary, and scale
Returns
-------
array : generated waveform
"""
[fs_wav, stimulus] = scipy.io.wavfile.read(
self.opts["wavefile"]
) # raw is a numpy array of integer, representing the samples
if len(stimulus.shape) > 1 and stimulus.shape[1] > 0:
stimulus = stimulus[:, self.opts["channel"]] # just use selected channel
fs_wav = float(fs_wav)
maxdur = self.opts["maxdur"]
delay = self.opts["delay"]
delay_array = np.zeros(
int(delay * fs_wav)
) # build delay array (may have 0 length)
if maxdur is None:
maxdur = delay + len(stimulus) / fs_wav # true total length
maxpts = int(maxdur * fs_wav)
stimulus = np.hstack((delay_array, stimulus))[:maxpts]
if self.opts["rate"] != fs_wav:
stimulus = resampy.resample(stimulus, fs_wav, self.opts["rate"])
self.opts["duration"] = (stimulus.shape[0] - 1) / self.opts[
"rate"
] # compute the duration, match for linspace calculation used in time.
self._time = None
self.time # requesting time should cause recalulation of the time
if self.opts["dbspl"] is not None:
rms = np.sqrt(np.mean(stimulus ** 2.0)) # find rms of the waveform
stimulus = (
dbspl_to_pa(self.opts["dbspl"]) * stimulus / rms
) # scale into Pascals
if self.opts["scale"] is not None:
stimulus = stimulus * self.opts["scale"]
return stimulus
def sinusoidal_modulation(t, basestim, tstart, fmod, dmod, phaseshift):
"""
Impose a sinusoidal amplitude-modulation on the input waveform.
For dmod=100%, the envelope max is 2, the min is 0; for dmod = 0, the max and min are 1
maintains equal energy for all modulation depths.
Equation from Rhode and Greenberg, J. Neurophys, 1994 (adding missing parenthesis) and
Sayles et al. J. Physiol. 2013
The envelope can be phase shifted (useful for co-deviant stimuli).
Parameters
----------
t : array
array of waveform time values (seconds)
basestim : array
array of waveform values that will be subject to sinulsoidal envelope modulation
tstart : float
time at which the base sound starts (modulation starts then, with 0 phase crossing)
(seconds)
fmod : float
modulation frequency (Hz)
dmod : float
modulation depth (percent)
phaseshift : float
modulation phase shift (starting phase, radians)
"""
env = 1.0 + (dmod / 100.0) * np.sin(
(2.0 * np.pi * fmod * (t - tstart)) + phaseshift - np.pi / 2
) # envelope...
return basestim * env
def modnoise(t, rt, Fs, F0, dur, start, dBSPL, FMod, DMod, phaseshift, seed):
"""
Generate an amplitude-modulated noise with linear ramps.
Parameters
----------
t : array
array of waveform time values
rt : float
ramp duration
Fs : float
sample rate
F0 : float
tone frequency
dur : float
duration of noise
start : float
start time for noise
dBSPL : float
sound pressure of stimulus
FMod : float
modulation frequency
DMod : float
modulation depth percent
phaseshift : float
modulation phase
seed : int
seed for random number generator
Returns
-------
array :
waveform
"""
irpts = int(rt * Fs)
mxpts = len(t) + 1
pin = pipnoise(t, rt, Fs, dBSPL, dur, start, seed)
env = 1 + (DMod / 100.0) * np.sin(
(2 * np.pi * FMod * t) - np.pi / 2 + phaseshift
) # envelope...
pin = linearramp(pin, mxpts, irpts)
env = linearramp(env, mxpts, irpts)
return pin * env
def linearramp(pin, mxpts, irpts):
"""
Apply linear ramps to *pin*.
Parameters
----------
pin : array
input waveform to apply ramp to
mxpts : int
point in array to start ramp down
irpts : int
duration of the ramp
Returns
-------
array :
waveform
Original (adapted from Manis; makeANF_CF_RI.m)::
function [out] = ramp(pin, mxpts, irpts)
out = pin;
out(1:irpts)=pin(1:irpts).*(0:(irpts-1))/irpts;
out((mxpts-irpts):mxpts)=pin((mxpts-irpts):mxpts).*(irpts:-1:0)/irpts;
return;
end
"""
out = pin.copy()
r = np.linspace(0, 1, irpts)
irpts = int(irpts)
# print 'irpts: ', irpts
# print len(out)
out[:irpts] = out[:irpts] * r
# print out[mxpts-irpts:mxpts].shape
# print r[::-1].shape
out[mxpts - irpts - 1 : mxpts] = out[mxpts - irpts - 1 : mxpts] * r[::-1]
return out
def pipnoise(t, rt, Fs, dBSPL, pip_dur, pip_start, seed):
"""
Create a waveform with multiple sine-ramped noise pips. Output is in
Pascals.
Parameters
----------
t : array
array of time values
rt : float
ramp duration
Fs : float
sample rate
dBSPL : float
maximum sound pressure level of pip
pip_dur : float
duration of pip including ramps
pip_start : float
list of starting times for multiple pips
seed : int
random seed
Returns
-------
array :
waveform
"""
rng = np.random.RandomState(seed)
pin = np.zeros(t.size)
for start in pip_start:
# make pip template
pip_pts = int(pip_dur * Fs) + 1
pip = dbspl_to_pa(dBSPL) * rng.randn(pip_pts) # unramped stimulus
# add ramp
ramp_pts = int(rt * Fs) + 1
ramp = np.sin(np.linspace(0, np.pi / 2.0, ramp_pts)) ** 2
pip[:ramp_pts] *= ramp
pip[-ramp_pts:] *= ramp[::-1]
ts = int(np.floor(start * Fs))
pin[ts : ts + pip.size] += pip
return pin
def piptone(t, rt, Fs, F0, dBSPL, pip_dur, pip_start):
"""
Create a waveform with multiple sine-ramped tone pips. Output is in
Pascals.
Parameters
----------
t : array
array of time values
rt : float
ramp duration
Fs : float
sample rate
F0 : float
pip frequency
dBSPL : float
maximum sound pressure level of pip
pip_dur : float
duration of pip including ramps
pip_start : float
list of starting times for multiple pips
Returns
-------
array :
waveform
"""
# make pip template
pip_pts = int(pip_dur * Fs) + 1
pip_t = np.linspace(0, pip_dur, pip_pts)
pip = (
np.sqrt(2) * dbspl_to_pa(dBSPL) * np.sin(2 * np.pi * F0 * pip_t)
) # unramped stimulus
# add ramp
ramp_pts = int(rt * Fs) + 1
ramp = np.sin(np.linspace(0, np.pi / 2.0, ramp_pts)) ** 2
pip[:ramp_pts] *= ramp
pip[-ramp_pts:] *= ramp[::-1]
# apply template to waveform
pin = np.zeros(t.size)
ps = pip_start
if ~isinstance(ps, list):
ps = [ps]
for start in pip_start:
ts = int(np.floor(start * Fs))
pin[ts : ts + pip.size] += pip
return pin
def shape_signal(signal, t, rt, Fs, F0, dBSPL, pip_dur, pip_start):
"""
Create a waveform with multiple sine-ramped tone pips, based on the
signal (so output is *always* in phase with the reference signal waveform)
Output is in Pascals.
Parameters
----------
t : array
array of time values
rt : float
ramp duration (risetime)
Fs : float
sample rate
F0 : float
pip frequency
dBSPL : float
maximum sound pressure level of pip
pip_dur : float
duration of pip including ramps
pip_start : float
list of starting times for multiple pips
Returns
-------
array :
waveform
"""
pip_t = t
pip_pts = pip_t.shape[0]
pip = np.sqrt(2) * dbspl_to_pa(dBSPL) * signal # referencestimulus
# make envelope with cos2 rise-fall
ramp_pts = int(rt * Fs) + 1
env_pts = int(pip_dur * Fs)
envelope = np.ones(env_pts)
ramp = np.sin(np.linspace(0, np.pi / 2.0, ramp_pts)) ** 2
envelope[:ramp_pts] *= ramp
envelope[-ramp_pts:] *= ramp[::-1]
# apply envelope template to waveform
pin = np.zeros(t.size)
ps = pip_start
if ~isinstance(ps, list):
ps = [ps]
for start in pip_start:
ts = int(np.floor(start * Fs))
pin[ts : ts + envelope.size] += pip[ts : ts + envelope.size] * envelope
return pin
def clicks(t, Fs, dBSPL, click_duration, click_starts):
"""
Create a waveform with multiple retangular clicks. Output is in
Pascals.
Parameters
----------
t : array
array of time values
Fs : float
sample frequency (Hz)
click_start : float (seconds)
delay to first click in train
click_duration : float (seconds)
duration of each click
click_interval : float (seconds)
interval between click starts
nclicks : int
number of clicks in the click train
dspl : float
maximum sound pressure level of pip
Returns
-------
array :
waveform
"""
swave = np.zeros(t.size)
amp = dbspl_to_pa(dBSPL)
td = int(np.floor(click_duration * Fs))
nclicks = len(click_starts)
for n in range(nclicks):
t0s = click_starts[n] # time for nth click
t0 = int(np.floor(t0s * Fs)) # index
if t0 + td > t.size:
raise ValueError("Clicks: train duration exceeds waveform duration")
swave[t0 : t0 + td] = amp
return swave
def fmsweep(t, start, duration, freqs, ramp, dBSPL):
"""
Create a waveform for an FM sweep over time. Output is in
Pascals.
Parameters
----------
t : array
time array for waveform
start : float (seconds)
start time for sweep
duration : float (seconds)
duration of sweep
freqs : array (Hz)
Two-element array specifying the start and end frequency of the sweep
ramp : str
The shape of time course of the sweep (linear, logarithmic)
dBSPL : float
maximum sound pressure level of sweep
Returns
-------
array :
waveform
"""
sw = scipy.signal.chirp(
t, freqs[0], duration, freqs[1], method=ramp, phi=0, vertex_zero=True
)
sw = np.sqrt(2) * dbspl_to_pa(dBSPL) * sw
return sw
def make_ssn(rate, duration, sig, samplingrate):
"""
Speech-shaped noise
Adapted from http://www.srmathias.com/speech-shaped-noise/
Created on Thu Jun 26 12:42:08 2014
@author: smathias
"""
# note rate is currently ignored...
sig = np.array(sig).astype("float64")
if (
rate != samplingrate
): # interpolate to the current system sampling rate from the original rate
sig = np.interp(
np.arange(0, len(sig) / rate, 1.0 / rate),
np.arange(0, len(sig) / samplingrate),
1.0 / samplingrate,
)
sig = 2 * sig / np.max(sig)
z, t = noise_from_signal(sig, rate, keep_env=True)
return z, t
def noise_from_signal(x, fs=40000, keep_env=True):
"""Create a noise with same spectrum as the input signal.
Parameters
----------
x : array_like
Input signal.
fs : int
Sampling frequency of the input signal. (Default value = 40000)
keep_env : bool
Apply the envelope of the original signal to the noise. (Default
value = False)
Returns
-------
ndarray
Noise signal.
"""
x = np.asarray(x)
n_x = x.shape[-1]
n_fft = next_pow_2(n_x)
X = np.fft.rfft(x, next_pow_2(n_fft))
# Randomize phase.
noise_mag = np.abs(X) * np.exp(2.0 * np.pi * 1j * np.random.random(X.shape[-1]))
noise = np.real(np.fft.irfft(noise_mag, n_fft))
out = noise[:n_x]
if keep_env:
env = np.abs(scipy.signal.hilbert(x))
[bb, aa] = scipy.signal.butter(6.0, 50.0 / (fs / 2.0)) # 50 Hz LP filter
env = scipy.signal.filtfilt(bb, aa, env)
out *= env
t = np.arange(0, (len(out)) / fs, 1.0 / fs)
return out, t