# from email_test import * from cont_modules import * start = time.perf_counter() # write cleaned and prepped api report (general collection) to csv with identifier # csv_wrapper = read_api_to_wrapper() # write_csv_from_list(construct_ID('api_out', 'ALL'), csv_wrapper) # loads in test and training data, splits them by collection to feed into algorithm A = time.perf_counter() - start print('A: ' + str(A)) training_wrapper = read_csv_to_list_wrapper('./data/training_data/training_ALL_api_out.csv') B = time.perf_counter() - A print('B: ' + str(B)) test_wrapper = read_csv_to_list_wrapper('./2020-08-18_ALL_api_out.csv') # test_wrapper = read_api_to_wrapper() # too slow for now C = time.perf_counter() - B print('C: ' + str(C)) training_collections = split_collection(training_wrapper) D = time.perf_counter() - C print('D: ' + str(D)) test_collections = split_collection(test_wrapper) E = time.perf_counter() - D print('E: ' + str(E)) # run algorithm on split dataset # for collection_code in training_collections: # run_algorithm(collection_code, test_collections[collection_code], training_collections[collection_code]) # # sends human readable data to email # sendmail('data/predictions/%s' % construct_ID('predictions', collection_code)) collection_code = 'B_PHILPSYR' run_algorithm(collection_code, test_collections[collection_code], training_collections[collection_code]) F = time.perf_counter() - E print('F: ' + str(F)) print('*****') print('total: ' + str(F+E+D+C+B+A)) # sends human readable data to email # sendmail('data/predictions/%s' % construct_ID('predictions', collection_code))