Program to assist librarians with weeding by making predictions based on past decision data and integrating librarian-approved predictions into the data set
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

27 lines
941 B

import cupy as xp
from sklearn.metrics.pairwise import rbf_kernel
def kernel_linear(x1, x2, params):
return x1.dot(x2.T)
def kernel_poly(x1, x2, params):
return (x1.dot(x2.T) + 1)**params['degree']
def kernel_rbf(x1, x2, params):
if x2.ndim == 2:
return xp.exp(-xp.linalg.norm(xp.subtract(x1[:, :, xp.newaxis], x2[:, :, xp.newaxis].T), axis=1)**2/params['sigma']**2)
else:
return xp.exp(-xp.linalg.norm(xp.subtract(x1, x2), axis=1) ** 2 / params['sigma'] ** 2)
def kernel_rbf_sklearn(x1, x2, params):
return xp.asarray(rbf_kernel(xp.asnumpy(x1), gamma=params['sigma']))
def kernel_sigmoid(x1, x2, params):
return xp.tanh(params['alpha'] * (x1.dot(x2.T)) + params['beta'])
kernel_dict = {'linear': kernel_linear,
'poly': kernel_poly,
'rbf': kernel_rbf,
'rbf_sklearn': kernel_rbf_sklearn,
'sigmoid': kernel_sigmoid
}