You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
623 lines
21 KiB
623 lines
21 KiB
2 years ago
|
from __future__ import print_function
|
||
|
from neuron import h
|
||
|
import neuron
|
||
|
import collections
|
||
|
import numpy as np
|
||
|
import pyqtgraph as pg
|
||
|
import os
|
||
|
import re
|
||
|
import os.path
|
||
|
|
||
|
try:
|
||
|
basestring
|
||
|
except NameError:
|
||
|
basestring = str
|
||
|
|
||
|
|
||
|
class HocReader(object):
|
||
|
def __init__(self, hoc):
|
||
|
"""
|
||
|
Provides useful methods for reading hoc structures.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
hoc : :obj: `hoc` or str
|
||
|
Either a hoc object that hs been already created, or a string that defines a hoc file name.
|
||
|
"""
|
||
|
|
||
|
self.file_loaded = False
|
||
|
if isinstance(hoc, basestring):
|
||
|
fullfile = os.path.join(os.getcwd(), hoc)
|
||
|
if not os.path.isfile(fullfile):
|
||
|
raise Exception("File not found: %s" % (fullfile))
|
||
|
neuron.h.hoc_stdout(
|
||
|
"/dev/null"
|
||
|
) # prevent junk from printing while reading the file
|
||
|
success = neuron.h.load_file(str(fullfile))
|
||
|
neuron.h.hoc_stdout()
|
||
|
if success == 0: # indicates failure to read the file
|
||
|
raise NameError("Found file, but NEURON load failed: %s" % (fullfile))
|
||
|
self.file_loaded = True
|
||
|
self.h = h # save a copy of the hoc object itself.
|
||
|
else:
|
||
|
self.h = hoc # just use the passed argument
|
||
|
self.file_loaded = True
|
||
|
|
||
|
# geometry containers
|
||
|
self.edges = None
|
||
|
self.vertexes = None
|
||
|
|
||
|
# all sections in the hoc {sec_name: hoc Section}
|
||
|
self.sections = collections.OrderedDict()
|
||
|
# {sec_name: index} indicates index into self.sections.values() where
|
||
|
# Section can be found.
|
||
|
self.sec_index = {}
|
||
|
# {sec_name: [mechanism, ...]}
|
||
|
self.mechanisms = collections.OrderedDict()
|
||
|
# {sec_group_name: set(sec_name, ...)}
|
||
|
self.sec_groups = {}
|
||
|
|
||
|
# topology {section: (parent, [children,...])}
|
||
|
self.topology = {}
|
||
|
|
||
|
# populate self.sections, self.sec_index, and self.mechanisms
|
||
|
self.read_section_info()
|
||
|
|
||
|
# auto-generate section groups based on either hoc section lists, or
|
||
|
# on section name prefixes.
|
||
|
sec_lists = self.get_section_lists()
|
||
|
sec_prefixes = self.get_section_prefixes()
|
||
|
|
||
|
# Add groupings by section list if possible:
|
||
|
if len(sec_lists) > 1:
|
||
|
self.add_groups_by_section_list(sec_lists)
|
||
|
|
||
|
# Otherwise, try section prefixes
|
||
|
elif len(sec_prefixes) > 1:
|
||
|
for group, sections in sec_prefixes.items():
|
||
|
self.add_section_group(group, sections)
|
||
|
|
||
|
# generate topology
|
||
|
self._generate_topology()
|
||
|
|
||
|
def get_section(self, sec_name):
|
||
|
"""
|
||
|
Get the section associated with the section name
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sec_name : str
|
||
|
The name of the section object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The hoc Section object with the given name.
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
return self.sections[sec_name]
|
||
|
except KeyError:
|
||
|
raise KeyError("No section named '%s'" % sec_name)
|
||
|
|
||
|
def get_section_prefixes(self):
|
||
|
"""
|
||
|
Go through all the sections and generate a dictionary mapping their
|
||
|
name prefixes to the list of sections with that prefix.
|
||
|
|
||
|
For example, with sections names axon[0], axon[1], ais[0], and soma[0],
|
||
|
we would generate the following structure:
|
||
|
|
||
|
{'axon': ['axon[0]', 'axon[1]'],
|
||
|
'ais': ['ais[0]'],
|
||
|
'soma': ['soma[0]']}
|
||
|
"""
|
||
|
prefixes = {}
|
||
|
regex = re.compile("(?P<prefix>\w+)\[(\d*)\]")
|
||
|
for sec_name in self.sections:
|
||
|
g = regex.match(sec_name)
|
||
|
if g is None:
|
||
|
continue
|
||
|
prefix = g.group("prefix")
|
||
|
prefixes.setdefault(prefix, []).append(sec_name)
|
||
|
return prefixes
|
||
|
|
||
|
def get_mechanisms(self, section):
|
||
|
"""
|
||
|
Get a set of all of the mechanisms inserted into a given section
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
section : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A list of mechanism names
|
||
|
|
||
|
"""
|
||
|
return self.mechanisms[section]
|
||
|
|
||
|
def get_density(self, section, mechanism):
|
||
|
"""
|
||
|
Get density mechanism that may be found the section.
|
||
|
mechanism is a list ['name', 'gbarname']. This is needed because
|
||
|
some mechanisms do not adhere to any convention and may have a different
|
||
|
kind of 'gbarname' than 'gbar<name>_mechname'
|
||
|
returns the average of the conductance density, as that may range across different
|
||
|
values in a section (e.g., can vary by segments)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
section : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
mechanism : list
|
||
|
mechanism is a list ['name', 'gbarname']. It is used to
|
||
|
retrieve the mechanism density from HOC as
|
||
|
`segment.name.gbarname`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Mean conductance of the selected mechanism in the section, averaged across all segments of the section.
|
||
|
"""
|
||
|
|
||
|
gmech = []
|
||
|
for seg in section:
|
||
|
try:
|
||
|
x = getattr(seg, mechanism[0])
|
||
|
mecbar = "%s_%s" % (mechanism[1], mechanism[0])
|
||
|
if mecbar in dir(x):
|
||
|
gmech.append(getattr(x, mechanism[1]))
|
||
|
else:
|
||
|
print(
|
||
|
"hoc_reader:get_density did not find the mechanism in dir x",
|
||
|
dir(x),
|
||
|
)
|
||
|
except NameError:
|
||
|
return 0.0
|
||
|
except:
|
||
|
print("hoc_reader:get_density failed to evaluate the mechanisms... ")
|
||
|
raise
|
||
|
|
||
|
# print gmech
|
||
|
if len(gmech) == 0:
|
||
|
gmech = 0.0
|
||
|
return np.mean(gmech)
|
||
|
|
||
|
def get_sec_info(self, section, html=False):
|
||
|
"""
|
||
|
Get the info of the given section
|
||
|
modified from: neuronvisio
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
section : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
containing the information, with html formatting.
|
||
|
"""
|
||
|
if html:
|
||
|
br = " <b>"
|
||
|
bre = "</b>"
|
||
|
lbrk = "<br/>"
|
||
|
li = "<li>"
|
||
|
lie = "</li>"
|
||
|
else:
|
||
|
br = " "
|
||
|
bre = ""
|
||
|
li = ""
|
||
|
lie = ""
|
||
|
lbrk = "\n"
|
||
|
info = f"{br:s}Section Name:{bre:s} {section.name():s}{lbrk:s}"
|
||
|
info += f"{br:s}Length [um]:{bre:s} {section.L:f}{lbrk:s}"
|
||
|
info += f"{br:s}Diameter [um]:{bre:s} {section.diam:f}{lbrk:s}"
|
||
|
info += f"{br:s}Membrane Capacitance:{bre:s} {section.cm:f}{lbrk:s}"
|
||
|
info += f"{br:s}Axial Resistance :{bre:s} {section.Ra:f}{lbrk:s}"
|
||
|
info += f"{br:s}Number of Segments:{bre:s} {section.nseg:f}{lbrk:s}"
|
||
|
mechs = []
|
||
|
for seg in section:
|
||
|
for mech in seg:
|
||
|
mechs.append(mech.name())
|
||
|
mechs = set(mechs) # Excluding the repeating ones
|
||
|
|
||
|
mech_info = f"{br:s}Mechanisms in the section{bre:s}{lbrk:s}"
|
||
|
for mech_name in mechs:
|
||
|
s = f"{li:s} {mech_name:s} {lie:s}"
|
||
|
mech_info += s
|
||
|
info += mech_info
|
||
|
return info
|
||
|
|
||
|
def read_section_info(self):
|
||
|
"""
|
||
|
Read all the information about the sections in the current hoc file
|
||
|
Stores the result in the mechanisms class variable.
|
||
|
"""
|
||
|
# Collect list of all sections and their mechanism names.
|
||
|
self.sections = collections.OrderedDict()
|
||
|
self.mechanisms = collections.OrderedDict()
|
||
|
for i, sec in enumerate(self.h.allsec()):
|
||
|
self.sections[sec.name()] = sec
|
||
|
self.sec_index[sec.name()] = i
|
||
|
mechs = set()
|
||
|
for seg in sec:
|
||
|
for mech in seg:
|
||
|
mechs.add(mech.name())
|
||
|
self.mechanisms[sec.name()] = mechs
|
||
|
|
||
|
def hoc_namespace(self):
|
||
|
"""
|
||
|
Get a dict of the HOC namespace {'variable_name': hoc_object}.
|
||
|
NOTE: this method requires NEURON >= 7.3
|
||
|
"""
|
||
|
names = {}
|
||
|
for hvar in dir(self.h): # look through the whole list, no other way
|
||
|
try:
|
||
|
# some variables can't be pointed to...
|
||
|
if hvar in [
|
||
|
"nseg",
|
||
|
"diam_changed",
|
||
|
"nrn_shape_changed_",
|
||
|
"secondorder",
|
||
|
"stoprun",
|
||
|
]:
|
||
|
continue
|
||
|
u = getattr(self.h, hvar)
|
||
|
names[hvar] = u
|
||
|
except:
|
||
|
continue
|
||
|
return names
|
||
|
|
||
|
def find_hoc_hname(self, regex):
|
||
|
"""
|
||
|
Find hoc names matching a pattern
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
regex : str
|
||
|
Regular expression (Python Re module) to search for.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list
|
||
|
The names of HOC objects whose *hname* matches regex.
|
||
|
"""
|
||
|
objs = []
|
||
|
ns = self.hoc_namespace()
|
||
|
for n, v in ns.items():
|
||
|
try:
|
||
|
hname = v.hname()
|
||
|
if re.match(regex, hname):
|
||
|
objs.append(n)
|
||
|
except:
|
||
|
continue
|
||
|
return objs
|
||
|
|
||
|
def add_section_group(self, name, sections, overwrite=False):
|
||
|
"""
|
||
|
Declare a grouping of sections (or section names). Sections may be
|
||
|
grouped by any arbitrary criteria (cell, anatomical type, etc).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
name of the section group
|
||
|
sections: list
|
||
|
section names or hoc Section objects.
|
||
|
|
||
|
"""
|
||
|
if name in self.sec_groups and not overwrite:
|
||
|
raise Exception(
|
||
|
"Group name %s is already used (use overwrite=True)." % name
|
||
|
)
|
||
|
|
||
|
group = set()
|
||
|
for sec in sections:
|
||
|
if not isinstance(sec, basestring):
|
||
|
sec = sec.name()
|
||
|
group.add(sec)
|
||
|
self.sec_groups[name] = group
|
||
|
|
||
|
def get_section_group(self, name):
|
||
|
"""
|
||
|
Get a section group by name
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
name of the group (dendrite, for example)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The set of section names in the group *name*.
|
||
|
|
||
|
"""
|
||
|
return self.sec_groups[name]
|
||
|
|
||
|
def get_section_lists(self):
|
||
|
"""
|
||
|
Search through all of the hoc variables to find those that are "SectionLists"
|
||
|
"""
|
||
|
return self.find_hoc_hname(regex=r"SectionList\[")
|
||
|
# ns = self.hoc_namespace()
|
||
|
# return [name for name in ns if ns[name].hname().startswith('SectionList[')]
|
||
|
|
||
|
def add_groups_by_section_list(self, names):
|
||
|
"""
|
||
|
Add a new section groups from the hoc variables indicated in *names*.
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
names : list
|
||
|
List containing variable names as strings. Each name must refer to a list of
|
||
|
Sections in hoc. If a dict is supplied instead, then it
|
||
|
maps {hoc_list_name: section_group_name}.
|
||
|
|
||
|
Side effects (modifies)
|
||
|
-----------------------
|
||
|
calls add_section_group
|
||
|
|
||
|
"""
|
||
|
# if a list is supplied, then the names of groups to create are
|
||
|
# exactly the same as the names of hoc lists.
|
||
|
if not isinstance(names, dict):
|
||
|
names = {name: name for name in names}
|
||
|
for hoc_name, group_name in names.items():
|
||
|
var = getattr(self.h, hoc_name)
|
||
|
self.add_section_group(group_name, list(var))
|
||
|
|
||
|
def get_geometry(self):
|
||
|
"""
|
||
|
modified from:neuronvisio
|
||
|
Generate structures that describe the geometry of the sections and their segments (all segments are returned)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
vertexes : record array containing {pos: (x,y,z), dia, sec_id}
|
||
|
for each segment.
|
||
|
edges : array of pairs indicating the indexes of connected
|
||
|
vertexes.
|
||
|
Side effects
|
||
|
------------
|
||
|
Modifies vertexes and edges.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# return cached geometry if this method has already run.
|
||
|
if self.vertexes is not None:
|
||
|
return self.vertexes, self.edges
|
||
|
|
||
|
self.h.define_shape()
|
||
|
|
||
|
# map segments (lines) to the section that contains them
|
||
|
self.segment_to_section = {}
|
||
|
|
||
|
vertexes = []
|
||
|
connections = []
|
||
|
|
||
|
for secid, sec in enumerate(self.sections.values()):
|
||
|
x_sec, y_sec, z_sec, d_sec = self.retrieve_coordinate(sec)
|
||
|
|
||
|
for i, xi in enumerate(x_sec):
|
||
|
vertexes.append(((x_sec[i], y_sec[i], z_sec[i]), d_sec[i], secid))
|
||
|
indx_geom_seg = len(vertexes) - 1
|
||
|
if len(vertexes) > 1 and i > 0:
|
||
|
connections.append([indx_geom_seg, indx_geom_seg - 1])
|
||
|
|
||
|
self.edges = np.array(connections)
|
||
|
self.vertexes = np.empty(
|
||
|
len(vertexes), dtype=[("pos", float, 3), ("dia", float), ("sec_index", int)]
|
||
|
)
|
||
|
self.vertexes[:] = vertexes
|
||
|
return self.vertexes, self.edges
|
||
|
|
||
|
def retrieve_coordinate(self, section):
|
||
|
"""Retrieve the coordinates of a section avoiding duplicates
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
section : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
arrays of x, y, z, d for all the segments of the specified section.
|
||
|
|
||
|
"""
|
||
|
|
||
|
section.push()
|
||
|
x, y, z, d = [], [], [], []
|
||
|
|
||
|
tot_points = 0
|
||
|
connect_next = False
|
||
|
for i in range(int(self.h.n3d())):
|
||
|
present = False
|
||
|
x_i = self.h.x3d(i)
|
||
|
y_i = self.h.y3d(i)
|
||
|
z_i = self.h.z3d(i)
|
||
|
d_i = self.h.diam3d(i)
|
||
|
# Avoiding duplicates in the sec
|
||
|
if x_i in x:
|
||
|
ind = len(x) - 1 - x[::-1].index(x_i) # Getting the index of last value
|
||
|
if y_i == y[ind]:
|
||
|
if z_i == z[ind]:
|
||
|
present = True
|
||
|
|
||
|
if not present:
|
||
|
k = (x_i, y_i, z_i)
|
||
|
x.append(x_i)
|
||
|
y.append(y_i)
|
||
|
z.append(z_i)
|
||
|
d.append(d_i)
|
||
|
self.h.pop_section()
|
||
|
return (np.array(x), np.array(y), np.array(z), np.array(d))
|
||
|
|
||
|
def _generate_topology(self):
|
||
|
for name, sec in self.sections.items():
|
||
|
sref = self.h.SectionRef(sec=sec)
|
||
|
parent = sref.parent().sec.name() if sref.has_parent() else None
|
||
|
if name not in self.topology:
|
||
|
self.topology[name] = [None, []]
|
||
|
self.topology[name][0] = parent
|
||
|
if parent is not None:
|
||
|
if parent not in self.topology:
|
||
|
self.topology[parent] = [None, []]
|
||
|
self.topology[parent][1].append(name)
|
||
|
|
||
|
def get_branch(self, root):
|
||
|
"""
|
||
|
Return all sections in a branch, starting with root.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
root : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
|
||
|
"""
|
||
|
branch = [root]
|
||
|
childs = [root]
|
||
|
while len(childs) > 0:
|
||
|
new_childs = []
|
||
|
for ch in childs:
|
||
|
new_childs.extend(self.topology[ch][1])
|
||
|
childs = new_childs
|
||
|
branch.extend(childs)
|
||
|
return branch
|
||
|
|
||
|
def translate_branch(self, root, dx):
|
||
|
"""
|
||
|
Move the branch beginning at *root* by *dx*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
root : :obj: `NEURON section`
|
||
|
The NEURON section object.
|
||
|
dx : array
|
||
|
Which must be an array of length 3 defining the translation.
|
||
|
|
||
|
"""
|
||
|
self.get_geometry()
|
||
|
dx[np.newaxis, :]
|
||
|
for name in self.get_branch(root):
|
||
|
sid = self.sec_index[name]
|
||
|
mask = self.vertexes["sec_index"] == sid
|
||
|
self.vertexes["pos"][mask] += dx
|
||
|
|
||
|
def make_volume_data(self, resolution=1.0, max_size=500e6):
|
||
|
"""
|
||
|
Using the current state of vertexes, edges, generates a scalar field
|
||
|
useful for building isosurface or volumetric renderings.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
resolution: float, default=1.0 microns
|
||
|
width (um) of a single voxel in the scalar field.
|
||
|
max_size: int
|
||
|
maximum allowed scalar field size (bytes).
|
||
|
Returns
|
||
|
-------
|
||
|
* 3D scalar field indicating distance from nearest membrane,
|
||
|
* 3D field indicating section IDs of nearest membrane,
|
||
|
* QTransform that maps from 3D array indexes to original vertex
|
||
|
coordinates.
|
||
|
"""
|
||
|
vertexes, lines = self.get_geometry()
|
||
|
|
||
|
maxdia = vertexes["dia"].max() # maximum diameter (defines shape of kernel)
|
||
|
kernel_size = int(maxdia / resolution) + 3 # width of kernel
|
||
|
|
||
|
# read vertex data
|
||
|
pos = vertexes["pos"]
|
||
|
d = vertexes["dia"]
|
||
|
sec_id = vertexes["sec_index"]
|
||
|
|
||
|
# decide on dimensions of scalar field
|
||
|
mx = pos.max(axis=0)
|
||
|
mn = pos.min(axis=0)
|
||
|
diff = mx - mn
|
||
|
shape = tuple((diff / resolution + kernel_size).astype(int))
|
||
|
|
||
|
# prepare blank scalar field for drawing
|
||
|
size = np.dtype(np.float32).itemsize * shape[0] * shape[1] * shape[2]
|
||
|
if size > max_size:
|
||
|
raise Exception(
|
||
|
"Scalar field would be larger than max_size (%dMB > %dMB), resolution is%f"
|
||
|
% (size / 1e6, max_size / 1e6, resolution)
|
||
|
)
|
||
|
scfield = np.zeros(shape, dtype=np.float32)
|
||
|
scfield[:] = -1000
|
||
|
|
||
|
# array for holding IDs of sections that contribute to each area
|
||
|
idfield = np.empty(shape, dtype=int)
|
||
|
idfield[:] = -1
|
||
|
|
||
|
# map vertex locations to voxels
|
||
|
vox_pos = pos.copy()
|
||
|
vox_pos -= mn.reshape((1, 3))
|
||
|
vox_pos *= 1.0 / resolution
|
||
|
|
||
|
# Define kernel used to draw scalar field along dendrites
|
||
|
def cone(i, j, k):
|
||
|
# value decreases linearly with distance from center of kernel.
|
||
|
w = kernel_size / 2
|
||
|
return w - ((i - w) ** 2 + (j - w) ** 2 + (k - w) ** 2) ** 0.5
|
||
|
|
||
|
kernel = resolution * np.fromfunction(cone, (kernel_size,) * 3)
|
||
|
kernel -= kernel.max()
|
||
|
|
||
|
def array_intersection(arr1, arr2, pos):
|
||
|
"""
|
||
|
Return slices used to access the overlapping area between two
|
||
|
arrays that are offset such that the origin of *arr2* is a *pos*
|
||
|
relative to *arr1*.
|
||
|
"""
|
||
|
s1 = [0] * 3
|
||
|
s2 = [0] * 3
|
||
|
t1 = [0] * 3
|
||
|
t2 = [0] * 3
|
||
|
pos = map(int, pos)
|
||
|
for axis in range(3):
|
||
|
s1[axis] = max(0, -pos[axis])
|
||
|
s2[axis] = min(arr2.shape[axis], arr1.shape[axis] - pos[axis])
|
||
|
t1[axis] = max(0, pos[axis])
|
||
|
t2[axis] = min(arr1.shape[axis], pos[axis] + arr2.shape[axis])
|
||
|
slice1 = (slice(t1[0], t2[0]), slice(t1[1], t2[1]), slice(t1[2], t2[2]))
|
||
|
slice2 = (slice(s1[0], s2[0]), slice(s1[1], s2[1]), slice(s1[2], s2[2]))
|
||
|
return slice1, slice2
|
||
|
|
||
|
# Draw lines into volume using *kernel* as the brush
|
||
|
vox_pos[:, 0] = np.clip(vox_pos[:, 0], 0, scfield.shape[0] - 1)
|
||
|
vox_pos[:, 1] = np.clip(vox_pos[:, 1], 0, scfield.shape[1] - 1)
|
||
|
vox_pos[:, 2] = np.clip(vox_pos[:, 2], 0, scfield.shape[2] - 1)
|
||
|
for c in range(lines.shape[0]):
|
||
|
i = lines[c, 0]
|
||
|
j = lines[c, 1]
|
||
|
p1 = vox_pos[i].copy()
|
||
|
p2 = vox_pos[j].copy()
|
||
|
diff = p2 - p1
|
||
|
axis = np.argmax(np.abs(diff))
|
||
|
dia = d[i]
|
||
|
nvoxels = abs(int(diff[axis])) + 1
|
||
|
for k in range(nvoxels):
|
||
|
kern = kernel + (dia / 2.0)
|
||
|
sl1, sl2 = array_intersection(
|
||
|
scfield, kern, p1
|
||
|
) # find the overlapping area between the field and the kernel
|
||
|
idfield[sl1] = np.where(
|
||
|
scfield[sl1] > kern[sl2], idfield[sl1], sec_id[i]
|
||
|
)
|
||
|
scfield[sl1] = np.where(
|
||
|
scfield[sl1] > kern[sl2], scfield[sl1], kern[sl2]
|
||
|
)
|
||
|
dia += (d[j] - d[i]) / nvoxels
|
||
|
p1 += diff / nvoxels
|
||
|
|
||
|
# return transform relating volume data to original vertex data
|
||
|
transform = pg.Transform3D()
|
||
|
w = resolution * kernel_size / 2 # offset introduced due to kernel
|
||
|
transform.translate(*(mn - w))
|
||
|
transform.scale(resolution, resolution, resolution)
|
||
|
transform.translate(1, 1, 1)
|
||
|
return scfield, idfield, transform
|