model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

622 lines
21 KiB

from __future__ import print_function
from neuron import h
import neuron
import collections
import numpy as np
import pyqtgraph as pg
import os
import re
import os.path
try:
basestring
except NameError:
basestring = str
class HocReader(object):
def __init__(self, hoc):
"""
Provides useful methods for reading hoc structures.
Parameters
----------
hoc : :obj: `hoc` or str
Either a hoc object that hs been already created, or a string that defines a hoc file name.
"""
self.file_loaded = False
if isinstance(hoc, basestring):
fullfile = os.path.join(os.getcwd(), hoc)
if not os.path.isfile(fullfile):
raise Exception("File not found: %s" % (fullfile))
neuron.h.hoc_stdout(
"/dev/null"
) # prevent junk from printing while reading the file
success = neuron.h.load_file(str(fullfile))
neuron.h.hoc_stdout()
if success == 0: # indicates failure to read the file
raise NameError("Found file, but NEURON load failed: %s" % (fullfile))
self.file_loaded = True
self.h = h # save a copy of the hoc object itself.
else:
self.h = hoc # just use the passed argument
self.file_loaded = True
# geometry containers
self.edges = None
self.vertexes = None
# all sections in the hoc {sec_name: hoc Section}
self.sections = collections.OrderedDict()
# {sec_name: index} indicates index into self.sections.values() where
# Section can be found.
self.sec_index = {}
# {sec_name: [mechanism, ...]}
self.mechanisms = collections.OrderedDict()
# {sec_group_name: set(sec_name, ...)}
self.sec_groups = {}
# topology {section: (parent, [children,...])}
self.topology = {}
# populate self.sections, self.sec_index, and self.mechanisms
self.read_section_info()
# auto-generate section groups based on either hoc section lists, or
# on section name prefixes.
sec_lists = self.get_section_lists()
sec_prefixes = self.get_section_prefixes()
# Add groupings by section list if possible:
if len(sec_lists) > 1:
self.add_groups_by_section_list(sec_lists)
# Otherwise, try section prefixes
elif len(sec_prefixes) > 1:
for group, sections in sec_prefixes.items():
self.add_section_group(group, sections)
# generate topology
self._generate_topology()
def get_section(self, sec_name):
"""
Get the section associated with the section name
Parameters
----------
sec_name : str
The name of the section object.
Returns
-------
The hoc Section object with the given name.
"""
try:
return self.sections[sec_name]
except KeyError:
raise KeyError("No section named '%s'" % sec_name)
def get_section_prefixes(self):
"""
Go through all the sections and generate a dictionary mapping their
name prefixes to the list of sections with that prefix.
For example, with sections names axon[0], axon[1], ais[0], and soma[0],
we would generate the following structure:
{'axon': ['axon[0]', 'axon[1]'],
'ais': ['ais[0]'],
'soma': ['soma[0]']}
"""
prefixes = {}
regex = re.compile("(?P<prefix>\w+)\[(\d*)\]")
for sec_name in self.sections:
g = regex.match(sec_name)
if g is None:
continue
prefix = g.group("prefix")
prefixes.setdefault(prefix, []).append(sec_name)
return prefixes
def get_mechanisms(self, section):
"""
Get a set of all of the mechanisms inserted into a given section
Parameters
----------
section : :obj: `NEURON section`
The NEURON section object.
Returns
-------
A list of mechanism names
"""
return self.mechanisms[section]
def get_density(self, section, mechanism):
"""
Get density mechanism that may be found the section.
mechanism is a list ['name', 'gbarname']. This is needed because
some mechanisms do not adhere to any convention and may have a different
kind of 'gbarname' than 'gbar<name>_mechname'
returns the average of the conductance density, as that may range across different
values in a section (e.g., can vary by segments)
Parameters
----------
section : :obj: `NEURON section`
The NEURON section object.
mechanism : list
mechanism is a list ['name', 'gbarname']. It is used to
retrieve the mechanism density from HOC as
`segment.name.gbarname`.
Returns
-------
Mean conductance of the selected mechanism in the section, averaged across all segments of the section.
"""
gmech = []
for seg in section:
try:
x = getattr(seg, mechanism[0])
mecbar = "%s_%s" % (mechanism[1], mechanism[0])
if mecbar in dir(x):
gmech.append(getattr(x, mechanism[1]))
else:
print(
"hoc_reader:get_density did not find the mechanism in dir x",
dir(x),
)
except NameError:
return 0.0
except:
print("hoc_reader:get_density failed to evaluate the mechanisms... ")
raise
# print gmech
if len(gmech) == 0:
gmech = 0.0
return np.mean(gmech)
def get_sec_info(self, section, html=False):
"""
Get the info of the given section
modified from: neuronvisio
Parameters
----------
section : :obj: `NEURON section`
The NEURON section object.
Returns
-------
str
containing the information, with html formatting.
"""
if html:
br = " <b>"
bre = "</b>"
lbrk = "<br/>"
li = "<li>"
lie = "</li>"
else:
br = " "
bre = ""
li = ""
lie = ""
lbrk = "\n"
info = f"{br:s}Section Name:{bre:s} {section.name():s}{lbrk:s}"
info += f"{br:s}Length [um]:{bre:s} {section.L:f}{lbrk:s}"
info += f"{br:s}Diameter [um]:{bre:s} {section.diam:f}{lbrk:s}"
info += f"{br:s}Membrane Capacitance:{bre:s} {section.cm:f}{lbrk:s}"
info += f"{br:s}Axial Resistance :{bre:s} {section.Ra:f}{lbrk:s}"
info += f"{br:s}Number of Segments:{bre:s} {section.nseg:f}{lbrk:s}"
mechs = []
for seg in section:
for mech in seg:
mechs.append(mech.name())
mechs = set(mechs) # Excluding the repeating ones
mech_info = f"{br:s}Mechanisms in the section{bre:s}{lbrk:s}"
for mech_name in mechs:
s = f"{li:s} {mech_name:s} {lie:s}"
mech_info += s
info += mech_info
return info
def read_section_info(self):
"""
Read all the information about the sections in the current hoc file
Stores the result in the mechanisms class variable.
"""
# Collect list of all sections and their mechanism names.
self.sections = collections.OrderedDict()
self.mechanisms = collections.OrderedDict()
for i, sec in enumerate(self.h.allsec()):
self.sections[sec.name()] = sec
self.sec_index[sec.name()] = i
mechs = set()
for seg in sec:
for mech in seg:
mechs.add(mech.name())
self.mechanisms[sec.name()] = mechs
def hoc_namespace(self):
"""
Get a dict of the HOC namespace {'variable_name': hoc_object}.
NOTE: this method requires NEURON >= 7.3
"""
names = {}
for hvar in dir(self.h): # look through the whole list, no other way
try:
# some variables can't be pointed to...
if hvar in [
"nseg",
"diam_changed",
"nrn_shape_changed_",
"secondorder",
"stoprun",
]:
continue
u = getattr(self.h, hvar)
names[hvar] = u
except:
continue
return names
def find_hoc_hname(self, regex):
"""
Find hoc names matching a pattern
Parameters
----------
regex : str
Regular expression (Python Re module) to search for.
Returns
-------
list
The names of HOC objects whose *hname* matches regex.
"""
objs = []
ns = self.hoc_namespace()
for n, v in ns.items():
try:
hname = v.hname()
if re.match(regex, hname):
objs.append(n)
except:
continue
return objs
def add_section_group(self, name, sections, overwrite=False):
"""
Declare a grouping of sections (or section names). Sections may be
grouped by any arbitrary criteria (cell, anatomical type, etc).
Parameters
----------
name : str
name of the section group
sections: list
section names or hoc Section objects.
"""
if name in self.sec_groups and not overwrite:
raise Exception(
"Group name %s is already used (use overwrite=True)." % name
)
group = set()
for sec in sections:
if not isinstance(sec, basestring):
sec = sec.name()
group.add(sec)
self.sec_groups[name] = group
def get_section_group(self, name):
"""
Get a section group by name
Parameters
----------
name : str
name of the group (dendrite, for example)
Returns
-------
The set of section names in the group *name*.
"""
return self.sec_groups[name]
def get_section_lists(self):
"""
Search through all of the hoc variables to find those that are "SectionLists"
"""
return self.find_hoc_hname(regex=r"SectionList\[")
# ns = self.hoc_namespace()
# return [name for name in ns if ns[name].hname().startswith('SectionList[')]
def add_groups_by_section_list(self, names):
"""
Add a new section groups from the hoc variables indicated in *names*.
Parameters
-----------
names : list
List containing variable names as strings. Each name must refer to a list of
Sections in hoc. If a dict is supplied instead, then it
maps {hoc_list_name: section_group_name}.
Side effects (modifies)
-----------------------
calls add_section_group
"""
# if a list is supplied, then the names of groups to create are
# exactly the same as the names of hoc lists.
if not isinstance(names, dict):
names = {name: name for name in names}
for hoc_name, group_name in names.items():
var = getattr(self.h, hoc_name)
self.add_section_group(group_name, list(var))
def get_geometry(self):
"""
modified from:neuronvisio
Generate structures that describe the geometry of the sections and their segments (all segments are returned)
Returns
-------
vertexes : record array containing {pos: (x,y,z), dia, sec_id}
for each segment.
edges : array of pairs indicating the indexes of connected
vertexes.
Side effects
------------
Modifies vertexes and edges.
"""
# return cached geometry if this method has already run.
if self.vertexes is not None:
return self.vertexes, self.edges
self.h.define_shape()
# map segments (lines) to the section that contains them
self.segment_to_section = {}
vertexes = []
connections = []
for secid, sec in enumerate(self.sections.values()):
x_sec, y_sec, z_sec, d_sec = self.retrieve_coordinate(sec)
for i, xi in enumerate(x_sec):
vertexes.append(((x_sec[i], y_sec[i], z_sec[i]), d_sec[i], secid))
indx_geom_seg = len(vertexes) - 1
if len(vertexes) > 1 and i > 0:
connections.append([indx_geom_seg, indx_geom_seg - 1])
self.edges = np.array(connections)
self.vertexes = np.empty(
len(vertexes), dtype=[("pos", float, 3), ("dia", float), ("sec_index", int)]
)
self.vertexes[:] = vertexes
return self.vertexes, self.edges
def retrieve_coordinate(self, section):
"""Retrieve the coordinates of a section avoiding duplicates
Parameters
----------
section : :obj: `NEURON section`
The NEURON section object.
Returns
-------
array
arrays of x, y, z, d for all the segments of the specified section.
"""
section.push()
x, y, z, d = [], [], [], []
tot_points = 0
connect_next = False
for i in range(int(self.h.n3d())):
present = False
x_i = self.h.x3d(i)
y_i = self.h.y3d(i)
z_i = self.h.z3d(i)
d_i = self.h.diam3d(i)
# Avoiding duplicates in the sec
if x_i in x:
ind = len(x) - 1 - x[::-1].index(x_i) # Getting the index of last value
if y_i == y[ind]:
if z_i == z[ind]:
present = True
if not present:
k = (x_i, y_i, z_i)
x.append(x_i)
y.append(y_i)
z.append(z_i)
d.append(d_i)
self.h.pop_section()
return (np.array(x), np.array(y), np.array(z), np.array(d))
def _generate_topology(self):
for name, sec in self.sections.items():
sref = self.h.SectionRef(sec=sec)
parent = sref.parent().sec.name() if sref.has_parent() else None
if name not in self.topology:
self.topology[name] = [None, []]
self.topology[name][0] = parent
if parent is not None:
if parent not in self.topology:
self.topology[parent] = [None, []]
self.topology[parent][1].append(name)
def get_branch(self, root):
"""
Return all sections in a branch, starting with root.
Parameters
----------
root : :obj: `NEURON section`
The NEURON section object.
"""
branch = [root]
childs = [root]
while len(childs) > 0:
new_childs = []
for ch in childs:
new_childs.extend(self.topology[ch][1])
childs = new_childs
branch.extend(childs)
return branch
def translate_branch(self, root, dx):
"""
Move the branch beginning at *root* by *dx*.
Parameters
----------
root : :obj: `NEURON section`
The NEURON section object.
dx : array
Which must be an array of length 3 defining the translation.
"""
self.get_geometry()
dx[np.newaxis, :]
for name in self.get_branch(root):
sid = self.sec_index[name]
mask = self.vertexes["sec_index"] == sid
self.vertexes["pos"][mask] += dx
def make_volume_data(self, resolution=1.0, max_size=500e6):
"""
Using the current state of vertexes, edges, generates a scalar field
useful for building isosurface or volumetric renderings.
Parameters
----------
resolution: float, default=1.0 microns
width (um) of a single voxel in the scalar field.
max_size: int
maximum allowed scalar field size (bytes).
Returns
-------
* 3D scalar field indicating distance from nearest membrane,
* 3D field indicating section IDs of nearest membrane,
* QTransform that maps from 3D array indexes to original vertex
coordinates.
"""
vertexes, lines = self.get_geometry()
maxdia = vertexes["dia"].max() # maximum diameter (defines shape of kernel)
kernel_size = int(maxdia / resolution) + 3 # width of kernel
# read vertex data
pos = vertexes["pos"]
d = vertexes["dia"]
sec_id = vertexes["sec_index"]
# decide on dimensions of scalar field
mx = pos.max(axis=0)
mn = pos.min(axis=0)
diff = mx - mn
shape = tuple((diff / resolution + kernel_size).astype(int))
# prepare blank scalar field for drawing
size = np.dtype(np.float32).itemsize * shape[0] * shape[1] * shape[2]
if size > max_size:
raise Exception(
"Scalar field would be larger than max_size (%dMB > %dMB), resolution is%f"
% (size / 1e6, max_size / 1e6, resolution)
)
scfield = np.zeros(shape, dtype=np.float32)
scfield[:] = -1000
# array for holding IDs of sections that contribute to each area
idfield = np.empty(shape, dtype=int)
idfield[:] = -1
# map vertex locations to voxels
vox_pos = pos.copy()
vox_pos -= mn.reshape((1, 3))
vox_pos *= 1.0 / resolution
# Define kernel used to draw scalar field along dendrites
def cone(i, j, k):
# value decreases linearly with distance from center of kernel.
w = kernel_size / 2
return w - ((i - w) ** 2 + (j - w) ** 2 + (k - w) ** 2) ** 0.5
kernel = resolution * np.fromfunction(cone, (kernel_size,) * 3)
kernel -= kernel.max()
def array_intersection(arr1, arr2, pos):
"""
Return slices used to access the overlapping area between two
arrays that are offset such that the origin of *arr2* is a *pos*
relative to *arr1*.
"""
s1 = [0] * 3
s2 = [0] * 3
t1 = [0] * 3
t2 = [0] * 3
pos = map(int, pos)
for axis in range(3):
s1[axis] = max(0, -pos[axis])
s2[axis] = min(arr2.shape[axis], arr1.shape[axis] - pos[axis])
t1[axis] = max(0, pos[axis])
t2[axis] = min(arr1.shape[axis], pos[axis] + arr2.shape[axis])
slice1 = (slice(t1[0], t2[0]), slice(t1[1], t2[1]), slice(t1[2], t2[2]))
slice2 = (slice(s1[0], s2[0]), slice(s1[1], s2[1]), slice(s1[2], s2[2]))
return slice1, slice2
# Draw lines into volume using *kernel* as the brush
vox_pos[:, 0] = np.clip(vox_pos[:, 0], 0, scfield.shape[0] - 1)
vox_pos[:, 1] = np.clip(vox_pos[:, 1], 0, scfield.shape[1] - 1)
vox_pos[:, 2] = np.clip(vox_pos[:, 2], 0, scfield.shape[2] - 1)
for c in range(lines.shape[0]):
i = lines[c, 0]
j = lines[c, 1]
p1 = vox_pos[i].copy()
p2 = vox_pos[j].copy()
diff = p2 - p1
axis = np.argmax(np.abs(diff))
dia = d[i]
nvoxels = abs(int(diff[axis])) + 1
for k in range(nvoxels):
kern = kernel + (dia / 2.0)
sl1, sl2 = array_intersection(
scfield, kern, p1
) # find the overlapping area between the field and the kernel
idfield[sl1] = np.where(
scfield[sl1] > kern[sl2], idfield[sl1], sec_id[i]
)
scfield[sl1] = np.where(
scfield[sl1] > kern[sl2], scfield[sl1], kern[sl2]
)
dia += (d[j] - d[i]) / nvoxels
p1 += diff / nvoxels
# return transform relating volume data to original vertex data
transform = pg.Transform3D()
w = resolution * kernel_size / 2 # offset introduced due to kernel
transform.translate(*(mn - w))
transform.scale(resolution, resolution, resolution)
transform.translate(1, 1, 1)
return scfield, idfield, transform