model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

134 lines
2.9 KiB

TITLE detailed model of Glycine receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of Glycine-A receptors
====================================
C -- C1 -- C2 -- O1
| |
D1 -- D2 -- D3
-----------------------------------------------------------------------------
This Model is based on:
Gentet LJ, Clements JD Binding site stoichiometry and the effects of
phosphorylation on human alpha1 homomeric glycine receptors J Physiol (Lond)
2002 vol. 544 (Pt 1) pp. 97-106, Figure 7.
Written by Paul Manis, UNC Chapel Hill, 2009
Kinetic values are estimated from VCN glycine receptors.
This model has desensitization states.
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS GLYaGC
POINTER XMTR
RANGE C0, C1, C2, D1, D2, D3, O1, Open
RANGE g, gmax, f1, f2
RANGE Erev
RANGE k1, km1, a1, b1, d1, r1, d2, r2, d3, r3, rd, dd
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = -70 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
: Rates
: bushy cell
k1 = 12.81 (/uM /ms) : binding
km1 = 0.0087 (/ms) : unbinding
a1 = 0.0194 (/ms) : opening
b1 = 1.138 (/ms) : closing
r1 = 5.19 (/ms) : desense 1
d1 = 0.000462 (/ms) : return from d1
r2 = 0.731 (/ms) : return from deep state
d2 = 1.641 (/ms) : going to deep state
r3 = 3.817 (/ms) : return from deep state
d3 = 1.806 (/ms) : going to deep state
rd = 1.0 (/ms)
dd = 1.0 (/ms)
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
XMTR (mM) : pointer to glycine concentration
f1 (/ms) : binding
f2 (/ms) : binding
Open (1)
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
D1 : desense, bound
O1 : open
D2 : Desense
D3 : Desense
}
INITIAL {
XMTR = 0
C0 = 1
C1 = 0
C2 = 0
O1 = 0
D1 = 0
D2 = 0
D3 = 0
}
BREAKPOINT {
SOLVE kstates METHOD sparse
Open = (O1)
g = gmax * Open
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
f1 = k1 * (1e3) * XMTR
f2 = k1 * (1e3) * XMTR
~ C0 <-> C1 (f1,km1)
~ C1 <-> C2 (f2,12.5*km1)
~ C2 <-> O1 (a1,b1)
~ C1 <-> D1 (r1, d1)
~ C2 <-> D2 (r2, d2)
~ D1 <-> D2 (rd, dd)
~ D2 <-> D3 (r3, d3)
CONSERVE C0+C1+C2+D1+D2+D3+O1 = 1
}