model of DCN pyramidal neuron
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

612 lines
21 KiB

from __future__ import print_function
from neuron import h
import numpy as np
import scipy
import scipy.integrate
import scipy.stats
import scipy.optimize
try:
import pyqtgraph as pg
HAVE_PG = True
except ImportError:
HAVE_PG = False
from ..util.stim import make_pulse
from ..util import fitting
from ..util import custom_init
from .protocol import Protocol
class IVCurve(Protocol):
def __init__(self):
super(IVCurve, self).__init__()
def reset(self):
super(IVCurve, self).reset()
self.voltage_traces = []
self.durs = None # durations of current steps
self.current_cmd = None # Current command levels
self.current_traces = []
self.time_values = None
self.dt = None
self.initdelay = 0.0
def run(
self,
ivrange,
cell,
durs=None,
sites=None,
reppulse=None,
temp=22,
dt=0.025,
initdelay=0.0,
):
"""
Run a current-clamp I/V curve on *cell*.
Parameters
----------
ivrange : dict of list of tuples
Each item in the list is (min, max, step) describing a range of
levels to test. Range values are inclusive, so the max value may
appear in the test values. Using multiple ranges allows finer
measurements in some ranges.
For example::
{'pulse': [(-1., 0., 1.), (-0.1, 0., 0.02)], 'prepulse': [(-0.5, 0, 0.1)]}
Optional keys include 'pulsedur' : the duration of the pulse, in ms
'prepulsecur: the duration of the prepulse, in ms
The prepulse or the pulse can have a single value if the other is ranged.
cell : Cell
The Cell instance to test.
durs : tuple
durations of (pre, pulse, post) regions of the command
sites : list
Sections to add recording electrodes
reppulse :
stimulate with pulse train
temp :
temperature of simulation (32)
dt :
timestep of simulation (0.025)
"""
self.reset()
self.cell = cell
self.initdelay = initdelay
self.dt = dt
self.temp = temp
# Calculate current pulse levels
icur = []
precur = [0.0]
self.pre_current_cmd = []
npresteps = 0
if isinstance(ivrange["pulse"], tuple):
icmd = [ivrange["pulse"]] # convert to a list with tuple(s) embedded
else:
icmd = ivrange["pulse"] # was already a list with multiple tuples
for c in icmd: # unpack current levels for the main pulse
try:
(imin, imax, istep) = c # unpack a tuple... or list
except:
raise TypeError(
"run_iv arguments must be a dict with tuples {'pulse': (imin, imax, istep), 'prepulse': ...}"
)
nstep = np.floor((imax - imin) / istep) + 1
icur.extend(imin + istep * np.arange(nstep)) # build the list
self.current_cmd = np.array(sorted(icur))
nsteps = self.current_cmd.shape[0]
# Configure IClamp
if durs is None:
durs = [10.0, 100.0, 50.0] # set default durs
if "prepulse" in ivrange.keys():
if isinstance(ivrange["prepulse"], tuple):
icmd = [ivrange["prepulse"]] # convert to a list with tuple(s) embedded
else:
icmd = ivrange["prepulse"] # was already a list with multiple tuples
precur = []
for c in icmd:
try:
(imin, imax, istep) = c # unpack a tuple... or list
except:
raise TypeError(
"run_iv arguments must be a dict with tuples {'pulse': (imin, imax, istep), 'prepulse': ...}"
)
nstep = np.floor((imax - imin) / istep) + 1
precur.extend(imin + istep * np.arange(nstep)) # build the list
self.pre_current_cmd = np.array(sorted(precur))
npresteps = self.pre_current_cmd.shape[0]
durs.insert(1, 50.0)
self.durs = durs
# set up stimulation with a pulse train
if reppulse is not None:
stim = {
"NP": 10,
"Sfreq": 50.0,
"delay": 10.0,
"dur": 2,
"amp": 1.0,
"PT": 0.0,
"dt": self.dt,
}
elif "prepulse" in ivrange.keys():
stim = {
"NP": 2,
"delay": durs[0],
"predur": durs[1],
"dur": durs[2],
"amp": 1.0,
"preamp": 0.0,
"dt": self.dt,
}
self.p_start = durs[0] + durs[1]
self.p_end = self.p_start + durs[2]
self.p_dur = durs[2]
else:
stim = {
"NP": 1,
"delay": durs[0],
"dur": durs[1],
"amp": 1.0,
"dt": self.dt,
}
self.p_start = durs[0]
self.p_end = self.p_start + durs[1]
self.p_dur = durs[1]
# print stim
# print('p_: ', self.p_start, self.p_end, self.p_dur)
istim = h.iStim(0.5, sec=cell.soma)
istim.delay = 5.0
istim.dur = 1e9 # these actually do not matter...
istim.iMax = 0.0
self.tend = np.sum(durs) # maxt + len(iextend)*stim['dt']
self.cell = cell
for i in range(nsteps):
# Generate current command for this level
stim["amp"] = self.current_cmd[i]
if npresteps > 0:
for j in range(npresteps):
stim["preamp"] = self.pre_current_cmd[j]
self.run_one(istim, stim, initflag=(i == 0 and j == 0))
else:
self.run_one(istim, stim, initflag=(i == 0))
def run_one(self, istim, stim, initflag=True):
"""
Perform one run in current-clamp for the selected cell
and add the data to the traces
Parameters
----------
istim : Stimulus electrode instance
stim : waveform information
initflag : boolean (default: True)
If true, force initialziation of the cell and computation of
point Rin, tau and Vm
"""
(secmd, maxt, tstims) = make_pulse(stim)
# print('maxt, dt*lencmd: ', maxt, len(secmd)*self.dt)# secmd = np.append(secmd, [0.])
# print('stim: ', stim, self.tend)
# connect current command vector
playvector = h.Vector(secmd)
playvector.play(istim._ref_i, h.dt, 0, sec=self.cell.soma)
# Connect recording vectors
self["v_soma"] = self.cell.soma(0.5)._ref_v
# self['q10'] = self.cell.soma(0.5).ihpyr_adj._ref_q10
# self['ih_ntau'] = self.cell.soma(0.5).ihpyr_adj._ref_kh_n_tau
self["i_inj"] = istim._ref_i
self["time"] = h._ref_t
# h('secondorder=0') # direct call fails; let hoc do the work
h.celsius = self.cell.status["temperature"]
self.cell.cell_initialize()
h.dt = self.dt
custom_init(v_init=self.cell.vm0)
h.t = 0.0
h.tstop = self.tend
while h.t < h.tstop:
h.fadvance()
self.voltage_traces.append(self["v_soma"])
self.current_traces.append(self["i_inj"])
self.time_values = np.array(self["time"] - self.initdelay)
# self.mon_q10 = np.array(self['q10'])
# self.mon_ih_ntau = np.array(self['ih_ntau'])
def peak_vm(self, window=0.5):
"""
Parameters
----------
window : float (default: 0.5)
fraction of trace to look at to find peak value
Returns
-------
peak membrane voltage for each trace.
"""
Vm = self.voltage_traces
Icmd = self.current_cmd
steps = len(Icmd)
peakStart = int(self.p_start / self.dt)
peakStop = int(
peakStart + (self.p_dur * window) / self.dt
) # peak can be in first half
Vpeak = []
for i in range(steps):
if Icmd[i] > 0:
Vpeak.append(Vm[i][peakStart:peakStop].max())
else:
Vpeak.append(Vm[i][peakStart:peakStop].min())
return np.array(Vpeak)
def steady_vm(self, window=0.1):
"""
Parameters
----------
window: (float) default: 0.1
fraction of window to use for steady-state measurement, taken
immediately before the end of the step
Returns
-------
steady-state membrane voltage for each trace.
"""
Vm = self.voltage_traces
steps = len(Vm)
steadyStop = int((self.p_end) / self.dt)
steadyStart = int(
steadyStop - (self.p_end * window) / self.dt
) # measure last 10% of trace
Vsteady = [Vm[i][steadyStart:steadyStop].mean() for i in range(steps)]
return np.array(Vsteady)
def spike_times(self, threshold=None):
"""
Return an array of spike times for each trace.
Parameters
----------
threshold: float (default: None)
Optional threshold at which to detect spikes. By
default, this queries cell.spike_threshold.
Returns
-------
list of spike times.
"""
if threshold is None:
threshold = self.cell.spike_threshold
Vm = self.voltage_traces
steps = len(Vm)
spikes = []
for i in range(steps):
# dvdt = np.diff(Vm[i]) / self.dt
# mask = (dvdt > 40).astype(int)
mask = (Vm[i] > threshold).astype(int)
indexes = np.argwhere(np.diff(mask) == 1)[:, 0] + 1
times = indexes.astype(float) * self.dt
spikes.append(times)
return spikes
def spike_filter(self, spikes, window=(0.0, np.inf)):
"""Filter the spikes to only those occurring in a defined window.
Required to compute input resistance in traces with no spikes during
the stimulus, because some traces will have anodal break spikes.
Parameters
----------
spikes : list
the list of spike trains returned from the spike_times method
window : (start, stop)
the window over which to look for spikes (in msec: default is
the entire trace).
Returns
-------
the spikes in a list
"""
filteredspikes = []
for i in range(len(spikes)):
winspikes = [] # spikes is arranged by current; so this is for one level
for j in range(len(spikes[i])):
if spikes[i][j] >= window[0] and spikes[i][j] <= window[1]:
winspikes.append(spikes[i][j])
filteredspikes.append(winspikes) # now build filtered spike list
return filteredspikes
def rest_vm(self):
"""
Parameters
----------
None
Returns
-------
The mean resting membrane potential.
"""
d = int(self.durs[0] / self.dt)
rvm = np.array(
[
np.array(self.voltage_traces[i][d // 2 : d]).mean()
for i in range(len(self.voltage_traces))
]
).mean()
return rvm
def input_resistance_tau(self, vmin=-10.0, imax=0, return_fits=False):
"""
Estimate resting input resistance and time constant.
Parameters
----------
vmin : float
minimum voltage to use in computation relative to resting
imax : float
maximum current to use in computation.
return_eval : bool
If True, return lmfit.ModelFit instances for the subthreshold trace
fits as well.
Returns
-------
dict :
Dict containing:
* 'slope' and 'intercept' keys giving linear
regression for subthreshold traces near rest
* 'tau' giving the average first-exponential fit time constant
* 'fits' giving a record array of exponential fit data to subthreshold
traces.
Analyzes only traces hyperpolarizing pulse traces near rest, with no
spikes.
"""
Vss = self.steady_vm()
vmin += self.rest_vm()
Icmd = self.current_cmd
rawspikes = self.spike_times()
spikes = self.spike_filter(rawspikes, window=[self.p_start, self.p_end])
steps = len(Icmd)
nSpikes = np.array([len(s) for s in spikes])
# find traces with Icmd < 0, Vm > -70, and no spikes.
vmask = Vss >= vmin
imask = Icmd <= imax
smask = nSpikes > 0
mask = vmask & imask & ~smask
if mask.sum() < 2:
print(
"WARNING: Not enough traces to do linear regression in "
"IVCurve.input_resistance_tau()."
)
print(
"{0:<15s}: {1:s}".format(
"vss", ", ".join(["{:.2f}".format(v) for v in Vss])
)
)
print(
"{0:<15s}: {1:s}".format(
"Icmd", ", ".join(["{:.2f}".format(i) for i in Icmd])
)
)
print("{0:<15s}: {1:s}".format("vmask", repr(vmask.astype(int))))
print("{0:<15s}: {1:s} ".format("imask", repr(imask.astype(int))))
print("{0:<15s}: {1:s}".format("spikemask", repr(smask.astype(int))))
raise Exception(
"Not enough traces to do linear regression (see info above)."
)
# Use these to measure input resistance by linear regression.
reg = scipy.stats.linregress(Icmd[mask], Vss[mask])
(slope, intercept, r, p, stderr) = reg
# also measure the tau in the same traces:
pulse_start = int(self.p_start / self.dt)
pulse_stop = int((self.p_end) / self.dt)
fits = []
fit_inds = []
tx = self.time_values[pulse_start:pulse_stop].copy()
for i, m in enumerate(mask):
if not m or (self.rest_vm() - Vss[i]) <= 1:
continue
trace = self.voltage_traces[i][pulse_start:pulse_stop]
# find first minimum in the trace
min_ind = np.argmin(trace)
min_val = trace[min_ind]
min_diff = trace[0] - min_val
tau_est = min_ind * self.dt * (1.0 - 1.0 / np.e)
# print ('minind: ', min_ind, tau_est)
fit = fitting.Exp1().fit(
trace[:min_ind],
method="nelder",
x=tx[:min_ind],
xoffset=(tx[0], "fixed"),
yoffset=(min_val, -120.0, -10.0),
amp=(min_diff, 0.0, 50.0),
tau=(tau_est, 0.5, 50.0),
)
# find first maximum in the trace (following with first minimum)
max_ind = np.argmax(trace[min_ind:]) + min_ind
max_val = trace[max_ind]
max_diff = min_val - max_val
tau2_est = max_ind * self.dt * (1.0 - 1.0 / np.e)
amp1_est = fit.params["amp"].value
tau1_est = fit.params["tau"].value
amp2_est = fit.params["yoffset"] - max_val
# print('tau1, tau2est: ', tau1_est, tau2_est)
# fit up to first maximum with double exponential, using prior
# fit as seed.
fit = fitting.Exp2().fit(
trace[:max_ind],
method="nelder",
x=tx[:max_ind],
xoffset=(tx[0], "fixed"),
yoffset=(max_val, -120.0, -10.0),
amp1=(amp1_est, 0.0, 200.0),
tau1=(tau1_est, 0.5, 50.0),
amp2=(amp2_est, -200.0, -0.5),
tau_ratio=(tau2_est / tau1_est, 2.0, 50.0),
tau2="tau_ratio * tau1",
)
fits.append(fit)
fit_inds.append(i)
# convert fits to record array
# print len(fits) # fits[0].params
if len(fits) > 0:
key_order = sorted(
fits[0].params
) # to ensure that unit tests remain stable
dtype = [(k, float) for k in key_order] + [("index", int)]
fit_data = np.empty(len(fits), dtype=dtype)
for i, fit in enumerate(fits):
for k, v in fit.params.items():
fit_data[i][k] = v.value
fit_data[i]["index"] = fit_inds[i]
if "tau" in fit_data.dtype.fields:
tau = fit_data["tau"].mean()
else:
tau = fit_data["tau1"].mean()
else:
slope = 0.0
intercept = 0.0
tau = 0.0
fit_data = []
ret = {"slope": slope, "intercept": intercept, "tau": tau, "fits": fit_data}
if return_fits:
return ret, fits
else:
return ret
def show(self, cell=None, rmponly=False):
"""
Plot results from run_iv()
Parameters
----------
cell : cell object (default: None)
"""
if not HAVE_PG:
raise Exception("Requires pyqtgraph")
#
# Generate figure with subplots
#
app = pg.mkQApp()
win = pg.GraphicsWindow(
"%s %s (%s)"
% (cell.status["name"], cell.status["modelType"], cell.status["species"])
)
self.win = win
win.resize(1000, 800)
Vplot = win.addPlot(labels={"left": "Vm (mV)", "bottom": "Time (ms)"})
rightGrid = win.addLayout(rowspan=2)
win.nextRow()
Iplot = win.addPlot(labels={"left": "Iinj (nA)", "bottom": "Time (ms)"})
IVplot = rightGrid.addPlot(labels={"left": "Vm (mV)", "bottom": "Icmd (nA)"})
IVplot.showGrid(x=True, y=True)
rightGrid.nextRow()
spikePlot = rightGrid.addPlot(
labels={"left": "Iinj (nA)", "bottom": "Spike times (ms)"}
)
rightGrid.nextRow()
FIplot = rightGrid.addPlot(
labels={"left": "Spike count", "bottom": "Iinj (nA)"}
)
win.ci.layout.setRowStretchFactor(0, 10)
win.ci.layout.setRowStretchFactor(1, 5)
#
# Plot simulation and analysis results
#
Vm = self.voltage_traces
Iinj = self.current_traces
Icmd = self.current_cmd
t = self.time_values
steps = len(Icmd)
# plot I, V traces
colors = [(i, steps * 3.0 / 2.0) for i in range(steps)]
for i in range(steps):
Vplot.plot(t, Vm[i], pen=colors[i])
Iplot.plot(t, Iinj[i], pen=colors[i])
if rmponly:
return
# I/V relationships
IVplot.plot(
Icmd,
self.peak_vm(),
symbol="o",
symbolBrush=(50, 150, 50, 255),
symbolSize=4.0,
)
IVplot.plot(Icmd, self.steady_vm(), symbol="s", symbolSize=4.0)
# F/I relationship and raster plot
spikes = self.spike_times()
for i, times in enumerate(spikes):
spikePlot.plot(
x=times,
y=[Icmd[i]] * len(times),
pen=None,
symbol="d",
symbolBrush=colors[i],
symbolSize=4.0,
)
FIplot.plot(x=Icmd, y=[len(s) for s in spikes], symbol="o", symbolSize=4.0)
# Print Rm, Vrest
rmtau, fits = self.input_resistance_tau(return_fits=True)
s = rmtau["slope"]
i = rmtau["intercept"]
# tau1 = rmtau['fits']['tau1'].mean()
# tau2 = rmtau['fits']['tau2'].mean()
# print ("\nMembrane resistance (chord): {0:0.1f} MOhm Taum1: {1:0.2f} Taum2: {2:0.2f}".format(s, tau1, tau2))
# Plot linear subthreshold I/V relationship
ivals = np.array([Icmd.min(), Icmd.max()])
vvals = s * ivals + i
line = pg.QtGui.QGraphicsLineItem(ivals[0], vvals[0], ivals[1], vvals[1])
line.setPen(pg.mkPen(255, 0, 0, 70))
line.setZValue(-10)
IVplot.addItem(line, ignoreBounds=True)
# plot exponential fits
for fit in fits:
t = np.linspace(self.p_start, self.p_end, 1000)
y = fit.eval(x=t)
Vplot.plot(
t, y, pen={"color": (100, 100, 0), "style": pg.QtCore.Qt.DashLine}
)
# plot initial guess
# y = fit.eval(x=t, **fit.init_params.valuesdict())
# Vplot.plot(t, y, pen={'color': 'b', 'style': pg.QtCore.Qt.DashLine})
print("Resting membrane potential: %0.1f mV\n" % self.rest_vm())